Skip to main content
Log in

DFT Modeling of Mechanism of Hydrogenation of Phenylacetylene into Styrene on a Pd(111) Surface

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A quantum chemical study of the possible routes of the phenylacetylene (PA) hydrogenation to styrene on a Pd(111) surface is carried out by the DFT-PBE method in the scalar-relativistic approximation. It is shown that the routes associated with the formation of the Ph–C–CH2 or Ph–CH–CH intermediates at the first stage have similar values of the turnover frequency (156 and 48 h–1, respectively). The route associated with the 1,2-hydride transfer in the adsorbed PA molecule is improbable due to the formation of a thermodynamically stable intermediate, Ph–CH–C. The interaction of the Ph group in the adsorbed PA molecule with the metal surface leads to the nonselective hydrogenation of the PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodzinski, A. and Bond, G.C., Catal. Rev.–Sci. Eng., 2006, vol. 48, p.91.

    Article  CAS  Google Scholar 

  2. Xu, X., Szanyi, J., Xu, Q., and Goodman, D.W., Catal. Today, 1994, vol. 21, p.57.

    Article  CAS  Google Scholar 

  3. Xiong, Y., McLellan, J.M., Chen, J., Yin, Y., Li, Z-Y., and Xia, Y., J. Am. Chem. Soc., 2005, vol. 127, p. 17118.

    Article  CAS  PubMed  Google Scholar 

  4. Yarulin, A.E., Crespo-Quesada, R.M., Egorova, E.V., and Kiwi-Minsker, L.L., Kinet. Catal., 2012, vol. 53, no. 2, p.253.

    Article  CAS  Google Scholar 

  5. Nikolaev, S.A., Zanaveskin, L.N., Smirnov, V.V., Averyanov, V.A., and Zanaveskin, K.L., Russ. Chem. Rev., 2009, vol. 78, no. 3, p.231.

    Article  CAS  Google Scholar 

  6. Berenblyum, A.S., Al-Wadhaf, H.A., and Katsman, E.A., Pet. Chem., 2015, vol. 55, no. 2, p.118.

    Article  CAS  Google Scholar 

  7. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p.151.

    Article  CAS  Google Scholar 

  8. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54. № 3, p.820.

    Article  CAS  Google Scholar 

  9. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  10. Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p.116.

    Article  CAS  Google Scholar 

  11. Shamsiev, R.S. and Danilov, F.O., Russ. Chem. Bull., 2017, vol. 66, no. 3, p.395.

    Article  CAS  Google Scholar 

  12. Shamsiev, R.S., Danilov, F.O., and Morozova, T.A., Russ. Chem. Bull., 2017, vol. 66, no. 3, p.401.

    Article  CAS  Google Scholar 

  13. Shamsiev, R.S., Danilov, F.O., Flid, V.R., and Schmidt, E.Yu., Russ. Chem. Bull., 2017, vol. 66, no. 12, p. 2234.

    Article  CAS  Google Scholar 

  14. Uhe, A., Kozuch, S., and Shaik, S., J. Comput. Chem., 2011, vol. 32, p.978.

    Article  CAS  PubMed  Google Scholar 

  15. Kozuch, S. and Martin, J.M.L., ACS Catal., 2011, vol. 1, p.246.

    Article  CAS  Google Scholar 

  16. Temkin, O.N., O razlichnykh vzaimosvyazyakh kinetiki i termodinamiki (On Different Relations of Kinetics and Thermodynamics), Saarbryukken: LAP LAMBERT Academic Publishing, 2016, no.128.

  17. Iucci, G., Carravetta, V., Paolucci, G., Goldoni, A., Russo, M.V., and Polzonetti, G., Chem. Phys., 2005, vol. 310, p.43.

    Article  CAS  Google Scholar 

  18. Joo, S-W. and Kim, K., J. Raman Spectrosc., 2004, vol. 35, p.549.

    Article  CAS  Google Scholar 

  19. Ormerod, R.M., Lambert, R.M., Bennett, D.W., and Tysoe, W.T., Surf. Sci., 1995, vol. 330, p.1.

    Article  CAS  Google Scholar 

  20. Domínguez-Domínguez, S., Berenguer-Murcia, A., Cazorla-Amorós, D., and Linares-Solano, A., J. Catal., 2006, vol. 243, p.74.

    Article  CAS  Google Scholar 

  21. Domínguez-Domínguez, S., Berenguer-Murcia, A., Pradhan, B.K., Linares-Solano, A., and Cazorla-Amoros, D., J. Phys. Chem. C., 2008, vol. 112, p. 3827.

    Article  CAS  Google Scholar 

  22. Weerachawanasak, P., Mekasuwandumrong, O., Arai, M., Fujita, S-I., Praserthdam, P., and Panpranot, J., J. Catal., 2009, vol. 262, p. 199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Shamsiev.

Additional information

Original Russian Text © R.S. Shamsiev, F.O. Danilov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 3, pp. 340–346.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsiev, R.S., Danilov, F.O. DFT Modeling of Mechanism of Hydrogenation of Phenylacetylene into Styrene on a Pd(111) Surface. Kinet Catal 59, 333–338 (2018). https://doi.org/10.1134/S0023158418030187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418030187

Keywords

Navigation