Advertisement

Kinetics and Catalysis

, Volume 59, Issue 2, pp 218–228 | Cite as

The Microstructure of Cobalt Silica Gel Catalyst in the Presence of Al2O3 Additive

  • S. I. Sulima
  • V. G. Bakun
  • R. E. Yakovenko
  • N. P. Shabel’skaya
  • A. N. Saliev
  • G. B. Narochnyi
  • A. P. Savost’yanov
Article

Abstract

The physico-chemical characteristics and microstructure of cobalt silica gel catalysts with an Al2O3 additive (up to 10%) for the synthesis of hydrocarbons by the Fischer–Tropsch method are studied using a set of methods including X-ray diffraction, BET, IR spectroscopy, and temperature-programmed reduction of H2, as well as scanning and transmission electron microscopy. Phases with a spinel structure, Со3О4, CoAl2O4, and solid solutions on their basis are identified in the samples. The addition of Al2O3 changes the degree of heterogeneity and the orientation of the cobalt crystallites in the oxide and reduced forms of the catalysts. Addition of 1% Al2O3 stabilizes Со3О4 in the spinel form with a structure close to the normal one and promotes the formation of cobalt with a unimodal distribution of particles with an average size of 8 nm. The catalyst is characterized by maximum activity and selectivity with respect to C5+ carbons.

Keywords

Fischer–Tropsch synthesis cobalt silica gel catalyst Al2O3 additive microstructure catalytic properties promotion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slivinskii, E.V., Kuz’min, A.E., Abramova, A.V., Kliger, G.A., and Loktev, S.M., Neftekhimiya, 1998, vol. 38, no. 4, p.243.Google Scholar
  2. 2.
    Dry, M.E., Catal. Today, 2002, vol. 71, p.227.CrossRefGoogle Scholar
  3. 3.
    Schulz, H., Appl. Catal., A, 1999, vol. 186, nos. 1–2, p.3.CrossRefGoogle Scholar
  4. 4.
    Lapidus, A.L. and Krylova, A.Yu., Ros. Khim. Zh., 2000, vol. 44, no. 1, p. 4Google Scholar
  5. 5.
    Lapidus, A.L., Krylova, A.Yu., Mikhailov, Ya.V., Sineva, L.V., and Erofeev, A.B., Solid Fuel Chem., 2011, no. 2, p.3.Google Scholar
  6. 6.
    Lapidus, A.L., Solid Fuel Chem., 2013, vol. 47, no. 6, p.315.CrossRefGoogle Scholar
  7. 7.
    Farzad, S., Haghtala, A., and Rashidi, A., J. Energy Chem., 2013, vol. 22, p.573.CrossRefGoogle Scholar
  8. 8.
    Shi, L., Jin, Y., Xing, C., Zeng, C., Kawabata, T., Imai, K., Matsuda, K., Tan, Y., and Tsubaki, N., Appl. Catal., A, 2012, vol. 435–436, p.217.CrossRefGoogle Scholar
  9. 9.
    Shimura, K., Miyazawa, T., Hanaoka, T., and Hirata, S., Catal. Today, 2014, vol. 232, p. 2CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Luo, J., Girleanu, M., Ersen, O., Pham-Huu, C., and Meny, C., J. Catal., 2014, vol. 318, p.179.CrossRefGoogle Scholar
  11. 11.
    Pei, Y., Ding, Y., Zhu, H., Zang, J., Song, X., Dong, W., Wang, T., and Lu, Y., Catal. Lett., 2014, vol. 144, p. 1433.CrossRefGoogle Scholar
  12. 12.
    Sun, X., Zhang, X., Zhang, Y., and Tsubaki, N., Appl. Catal., A, 2010, vol. 377, p.134.CrossRefGoogle Scholar
  13. 13.
    Xiong, H., Zhang, Y., Wang, S., and Li, J., Catal. Commun., 2005, vol. 6, p.512.CrossRefGoogle Scholar
  14. 14.
    Liu, C., Li, J., Zhang, Y., Chen, S., Zhu, J., and Liew, K., J. Mol. Catal. A: Chem., 2012, vol. 363-364, p.335.CrossRefGoogle Scholar
  15. 15.
    Bechara, R., Balloy, D., and Vanhove, D., Appl. Catal., A, 2001, vol. 207, p.343.CrossRefGoogle Scholar
  16. 16.
    Lifanov, E.V., Cand. Sci. (Chem.) Dissertation, Irkutsk, 2006Google Scholar
  17. 17.
    Ma, W., Jacobs, G., Keogh, R.A., Bukur, D.B., and Davis, B.H., Appl. Catal., A, 2012, vols. 437–438, p.1.CrossRefGoogle Scholar
  18. 18.
    Diehl, F. and Khodakov, A.Y., Rev. IFP, 2009, vol. 64, no. 1, p.11.Google Scholar
  19. 19.
    Jacobs, G., Das, T.K, Zhang, Y., Li, J., Racoillet, G., and Davis, B.H., Appl. Catal., A, 2002, vol. 233, nos. 1–2, p.263.CrossRefGoogle Scholar
  20. 20.
    Wang, H., Zhou, W., Liu, J.-X., Si, R., Sun, G., Zhong, M.-Q., Su, H.-Y., Zhao, H.-B., Rodriguez, J.A., Pennycook, S.J., Idrobo, J.-C., Li, W.-X., Kou, Y., and Ma, D., J. Am. Chem. Soc., 2013, vol. 135, no. 10, p. 4149.CrossRefGoogle Scholar
  21. 21.
    Nowitzki, T., Carlsson, A.F., Martyanov, O., Naschitzki, M., Zielasek, V., Risse, T., Schmal, M., Freund, H.-J., and Balume, M., J. Phys. Chem., 2007, vol. 111, no. 24, p. 8566.Google Scholar
  22. 22.
    Girardon, J.-S., Quinet, E., Griboval-Constant, A., Chernavskii, P.A., Gengembre, L., and Khodakov, A.Y., J. Catal., 2007, vol. 248, no. 2, p.143.CrossRefGoogle Scholar
  23. 23.
    Li, P., Liu, J., Nag, N., and Crozier, P.A., Appl. Catal., A, 2006, vol. 307, no. 2, p.212.CrossRefGoogle Scholar
  24. 24.
    Guczi, L., Boskovic, G., and Kiss, E., Catal. Rev.: Sci. Eng., 2010, vol. 52, no. 2, p.133.CrossRefGoogle Scholar
  25. 25.
    Riedel, T. and Schaub, G., Top. Catal., vol. 26, nos. 1–4, p.145.Google Scholar
  26. 26.
    Pinard, L., Bichon, P., Popov, A., and Lemberton, J.L., Canaff, M.F., Bazin, P., Aguiar, E.F.S., and Magnoux, P., Appl. Catal., A, 2011, vol. 406, p.73.CrossRefGoogle Scholar
  27. 27.
    Zhao, Y., Feltes, T.E., Regalbuto, J.R., Meyer, R.J., and Klie, R.F., Catal. Sci. Technol., 2011, vol. 1, p. 1483.CrossRefGoogle Scholar
  28. 28.
    Zhao, Y.-H., Wang, Y.-J., Hao, Q.-Q., Liu, Z.-T., and Liu, Z.-W., Fuel Process. Technol., 2015, vol. 136, p.87.CrossRefGoogle Scholar
  29. 29.
    Moradia, G.R., Basira, M.M., Taeba, A., and Kiennemann, A., Catal. Commun., 2003, vol. 4, no. 1, p.27.CrossRefGoogle Scholar
  30. 30.
    Mu, S., Li, D., Hou, B., Jia, L., Chen, J., and Sun, Y., Energy Fuels, 2010, vol. 24, no. 7, p. 3715.CrossRefGoogle Scholar
  31. 31.
    Miyazawa, T., Hanaoka, T., Shimura, K., and Hirata, S., Appl. Catal., A, 2013, vol. 467, p.47.CrossRefGoogle Scholar
  32. 32.
    Hinchiranan, S., Zhang, Y., Nagamori, A., Vitidsant, T., and Tsubaki, N., Fuel Process. Technol., 2008, vol. 89, p.455.CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Nagamori, S., Hinchiranan, S., Vitidsant, T., and Tsubaki, N., Energy Fuels, 2006, vol. 20, no. 2, p.417.CrossRefGoogle Scholar
  34. 34.
    Pei, Y., Ding, Y., Zhu, H., Zang, J., Song, X., Dong, W., Wang, T., and Lu, Y., Catal. Lett., 2014, vol. 144, no. 8, p. 1433.CrossRefGoogle Scholar
  35. 35.
    Sun, X., Zhang, X., Zhang, Y., and Tsubaki, N., Appl. Catal., A, 2010, vol. 377, p.134.CrossRefGoogle Scholar
  36. 36.
    Savost'yanov, A.P., Yakovenko, R.E., Sulima, S.I., Bakun, V.G., Narochnyi, G.B., Chernyshev, V.M., and Mitchenko, S.A., Catal. Today, 2017, vol. 279, p.107.CrossRefGoogle Scholar
  37. 37.
    Savost’yanov, A.P., Yakovenko, R.E., Narochnyi, G.B., Bakun, V.G., Sulima, S.I., Yakuba, E.S., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 1, p.81.CrossRefGoogle Scholar
  38. 38.
    Coutler, K.E. and Sault, A.G., J. Catal., 1995, vol. 154, p.56.CrossRefGoogle Scholar
  39. 39.
    Castner, D.G., Watson, P.R., and Chan, I.Y., J. Phys. Chem., 1989, vol. 93, p. 3188.CrossRefGoogle Scholar
  40. 40.
    Eliseev, O.L., Russ. J. Gen. Chem., 2008, vol. 52, no. 6, p. 2509.Google Scholar
  41. 41.
    Chernavskii, P.A., Kinet. Katal., 2005, vol. 46, no. 5, p.674.CrossRefGoogle Scholar
  42. 42.
    PDF-2. The powder diffraction file TM, International Center for Diffraction Data (ICDD), PDF-2 Release. 2012. http://www.icdd.com.Google Scholar
  43. 43.
    Young, R.A., The Rietveld method, Oxford: University Press, 1995.Google Scholar
  44. 44.
    Shimura, K., Miyazawa, T., Hanaoka, T., and Hirata, S., Appl. Catal., A, 2014, vol. 475, p.1.CrossRefGoogle Scholar
  45. 45.
    Leontyev, I.N., Chernyshov, D.Yu., Guterman, V.E., Pakhomova, E.V., and Guterman, A.V., Appl. Catal., A, 2009, vol. 357, p.1.CrossRefGoogle Scholar
  46. 46.
    Kashin, A.S. and Ananikov, V.P., Russ. Chem. Bull., 2011, vol. 60, p. 2602.CrossRefGoogle Scholar
  47. 47.
    Kachala, V.V., Khemchyan, L.L., Kashin, A.S., Orlov, N.V., Grachev, A.A., Zalesskiy, S.S., and Ananikov, V.P., Russ. Chem. Rev., 2013, vol. 82, p.648.CrossRefGoogle Scholar
  48. 48.
    Aldashukurova, G.B., Mironenko, A.V., Kud’yarova, Zh.B., Mansurov, Z.A., Shikina, N.V., Yashnik, S.A., and Ismagilov, Z.R., Gorenie Plazmokhim., 2013, vol. 11, no. 2, p.140.Google Scholar
  49. 49.
    Bulavchenko, O.A., Cherepanova, S.V., Malakhov, V.V., Dovlitova, L.S., Ischenko, A.V., Tsybulya, S.V., Kinet. Catal., 2009, vol. 50, no. 2, p.192.CrossRefGoogle Scholar
  50. 50.
    Sadykov, V.A., Doctoral (Chem.) Dissertation, Novosibirsk: Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 1998.Google Scholar
  51. 51.
    Al Lafi, A.G. and Al Abdullah, J., J. Mol. Struct., 2015, vol. 1093, p.13.CrossRefGoogle Scholar
  52. 52.
    Plyusnina, I.I., IK-spektroskopiya (Infrared Spectroscopy), Moscow: MGU, 1977.Google Scholar
  53. 53.
    Bulavchenko, O.A., Cand. Sci. (Chem.) Dissertation, Novosibirsk, 2010.Google Scholar
  54. 54.
    Barbier, A., Tuel, A., Arcon, I., Kodre, A., and Martin, G.A., J. Catal., 2001, vol. 200, p.106.CrossRefGoogle Scholar
  55. 55.
    Iglesia, E., App. Catal., A, 1997, vol. 161, nos. 1–2, p.59.CrossRefGoogle Scholar
  56. 56.
    Chernavskii, P.A., Zh. Fiz. Khim., 2003, vol. 77, p.636.Google Scholar
  57. 57.
    Okamoto, Y., Adachi, T., Nagata, K., Odawara, M., and Imanaka, T., Appl. Catal., 1991, vol. 73, no. 2, p.249.CrossRefGoogle Scholar
  58. 58.
    Zhang, H., Chu, W., Zou, C., Huang, Z., Ye, Z., and Zhu, L., Catal. Lett., vol. 141, no. 3, p.438.Google Scholar
  59. 59.
    Liu, C., Li, J., Zhang, Y., Chen, S., Zhu, J., and Liew, K., J. Mol. Catal. A: Chem., 2012, vol. 363–364, p.335.CrossRefGoogle Scholar
  60. 60.
    Shimura, K., Miyazawa, T., Hanaoka, T., and Hirata, S., J. Mol. Catal. A: Chem., 2014, vol. 394, p. 22CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Sulima
    • 1
  • V. G. Bakun
    • 1
  • R. E. Yakovenko
    • 1
  • N. P. Shabel’skaya
    • 1
  • A. N. Saliev
    • 1
  • G. B. Narochnyi
    • 1
  • A. P. Savost’yanov
    • 1
  1. 1.Platov South-Russian State Polytechnic University (NPI)NovocherkasskRussia

Personalised recommendations