Advertisement

Kinetics and Catalysis

, Volume 59, Issue 2, pp 211–217 | Cite as

Influence of Method of Introduction of Cu- and Zn-Based Modifiers on the Properties of Chromia–Alumina Catalysts

  • A. A. Merk
  • M. A. Salaev
  • O. V. Vodyankina
  • G. V. Mamontov
Article
  • 22 Downloads

Abstract

Three methods of introduction of modifiers based on Cu and Zn compounds into the CrOx/Al2O3 catalysts for dehydrogenation of light paraffin hydrocarbons are considered: Introduction from sol, introduction using successive impregnation technique and introduction of modifiers by impregnation along with precursor of chromium oxide. The obtained samples are studied by a complex of physical-chemical methods (XRD, UV-Vis spectroscopy, temperature-programmed reduction with hydrogen (TPR-H2), X-ray fluorescent (XRF) spectrometry, low-temperature N2 sorption). The catalytic properties of the samples are studied in kinetic mode in isobutane dehydrogenation. Cu- and Zn-modifiers are shown to influence on the peculiarities of reduction of Cr6+ and, hence, specify the state of active surface of CrOx/Al2O3 catalysts formed in the reductive reaction medium. Not only do the states of modifiers influence on the initial activity of the catalyst, but also on its activity after oxidative regeneration. Introduction of modifiers by successive impregnation method results in formation of copper and zinc aluminates or defective spinels on the Al2O3 surface. When the active component is introduced, the modified surface of the support promotes formation and stabilization of Cr6+ sites that can undergo reversible reduction–oxidation and provide high activity and selectivity towards formation of isobutylene (>98%).

Keywords

CrOx/Al2O3 catalysts modification method Cu- and Zn-based modifiers state of active component isobutane dehydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sattler, J.J.H.B., Ruiz-Martinez, J., Santillan-Jimenez, E., and Weckhuysen, B.M., Chem. Rev., 2014, vol. 114, p. 10613.CrossRefGoogle Scholar
  2. 2.
    Sanz, S.G., McMillan, L., McGregor, J., Zeitler, J.A., Al-Yassir, N., Al-Khattaf, S., and Gladden, L.F., Catal. Sci. Technol., 2016, vol. 6, p. 1120.CrossRefGoogle Scholar
  3. 3.
    Pakhomov, A.N., Nauchnye Osnovy prigotovleniya katalizatorov: vvedenie v teoriyu i praktiku (Scientific features of catalysts preparation: introduction to theory and practice), Izd-vo SO RAN, 2011, p.262.Google Scholar
  4. 4.
    Tyuryaev, I.Ya., Teoreticheskie osnovy polucheniya butadiena i izoprena metodami degidrirovaniya (Theoretical fundamentals of butadiene and isoprene synthesis by dehydrogenation), Kiev: Naukova Dumka, 1973.Google Scholar
  5. 5.
    Rubinstein, A.M., Pribytkova, N.A., Afanas’ev, V.A., and Slinkin, A.A., Actes 2-me Congr. Int. Catal. P.: Technip., 1961, vol. 2, p. 1981.Google Scholar
  6. 6.
    Carra, S. and Forni, L., Catal. Rev.: Sci. and Eng., 1972, p.159.Google Scholar
  7. 7.
    Kotel’nikov, G.R., Strunnikova, A.V., Patanov, V.A., and Arapova, I.P., Katalizatory degidrirovaniya nizshikh parafinovykh, olefinovykh i alkilaromaticheskikh uglevodorodov (Catalysts for the dehydrogenation of lower paraffinic, olefinic and alkylaromatic hydrocarbons), Moscow: TsNIITEneftekhim, 1978.Google Scholar
  8. 8.
    Shee, D. and Sayari, A., Appl. Catal., A, 2010, vol. 389, p.155.CrossRefGoogle Scholar
  9. 9.
    Yang, X., Sol–gel synthesized nanomaterials for environmental applications, PhD-thesis K. K-State, 2008, p.177.Google Scholar
  10. 10.
    Xu, L., Wang, Z., Song, H., and Chou, L., Catal. Commun., 2013, vol. 35, p.76.CrossRefGoogle Scholar
  11. 11.
    Zhao, H., Song, H., Xu, L., and Chou, L., Appl. Catal., A, 2013, vol. 456, p.188.CrossRefGoogle Scholar
  12. 12.
    Lebedev, N.N., Khimiya i tekhnologiya osnovnogo organicheskogo i neftekhimicheskogo sinteza (Chemistry and technology of basic organic and non-petrochemical synthetics), Moscow: Khimiya, 1981.Google Scholar
  13. 13.
    Rombi, E., Cutrufello, M.G., Solinas, V., De Rossi, S., Ferraris, G., and Pistone, A., Appl. Catal., A, 2003, p.255.Google Scholar
  14. 14.
    Neri, G., Pistone, A., De Rossi, S., Rombi, E., Milone, C., and Galvagno, S., Appl. Catal., A, 2004, vol. 260, p.75.CrossRefGoogle Scholar
  15. 15.
    Beccari, M. and Romano, U., Encyclopaedia of hydrocarbons, Rome: ENI & Istituto della Enciclopedia Italiana G. Treccani, 2006, vol. 2, p.687.Google Scholar
  16. 16.
    RF Patent 2176157, 2001.Google Scholar
  17. 17.
    US Patent 6362385 B1, 2002.Google Scholar
  18. 18.
    US Patent 20050075243 A1, 2005.Google Scholar
  19. 19.
    RF Patent 2325227, 2008.Google Scholar
  20. 20.
    RF Patent 2448770, 2012.Google Scholar
  21. 21.
    Bahmani, M., Farahani, B.V., and Sahebdelfar, S., Appl. Catal., A, 2016, vol. 520, p. 178CrossRefGoogle Scholar
  22. 22.
    Sameh, M.K., Aboul-fotouh, Fuel Chem. Technol., 2014, vol. 42, p.350.CrossRefGoogle Scholar
  23. 23.
    Debecker, D.P., Stoyanova, M., Colbeau-Justin, F., Rodemerck, U., Boissire, C., Gaigneaux, E.M., and Sanchez, C., Angew. Chem., 2012, vol. 51, p. 2129.CrossRefGoogle Scholar
  24. 24.
    Kirszensztejn, P. and Przekop, R., Annales UMCS, Chemia, 2011, vol. 66, p.12.Google Scholar
  25. 25.
    Takeishi, K. and Akaike, Y., Appl. Catal., A, 2016, vol. 510, p.20.CrossRefGoogle Scholar
  26. 26.
    Bugrova, T.A., Litvyakova, N.N., and Mamontov, G.V., Kinet. Catal., 2015, vol. 56, issue 6, p.758.CrossRefGoogle Scholar
  27. 27.
    Kim, T.-W., Song, M.-W., Koh, H.-L., and Kim, K.-L., Appl. Catal., A, 2001, vol. 210, p.35.CrossRefGoogle Scholar
  28. 28.
    Weckhusen, B.M., Verberckmoes, An.A., De Baets, A.R., and Schoonheydt, R.A., J. Catal., 1997, vol. 166, p.160.CrossRefGoogle Scholar
  29. 29.
    Cavani, F., Koutyrev, M., Trifiro, F., Bartolini, A., Ghisletti, D., Iezzi, R., Santucci, A., and Del Piero, G., J. Catal., 1996, vol. 158, p.236.CrossRefGoogle Scholar
  30. 30.
    Cutrufello, M.G., De Rossi, S., Ferino, I., et al., Thermochim. Acta, 2005, vol. 434, p.62.CrossRefGoogle Scholar
  31. 31.
    Yamamoto, T., Tanaka, T., Kuma, R., Suzuki, S., Amano, F., Shimooka, Y., Kohno, Y., Funabika, T., and Yoshida, S., Phys. Chem. Chem. Phys., 2002, vol. 4, p. 2449.CrossRefGoogle Scholar
  32. 32.
    Smith, M.L., Campos, A., and Spivey, J., Catal. Today, 2012, vol. 182, p.60.CrossRefGoogle Scholar
  33. 33.
    Fridman, V.Z., Xing, R., and Severance, M., Appl. Catal., A, 2016, vol. 523, p.39.CrossRefGoogle Scholar
  34. 34.
    Luo, M.-F., Fang, P., He, M., and Xie, Y. -L, J. Mol. Catal. A: Chem., 2005, vol. 239, p.243.CrossRefGoogle Scholar
  35. 35.
    Zhu, H., Dong, X., Shi, L., and Sun, Q., J. Nat. Gas Chem., 2010, vol. 19, p.67.CrossRefGoogle Scholar
  36. 36.
    Maniecki, T.P., Mierczynski, P., and Jozwiak, W.K., Kinet. Catal., 2010, vol. 51, p.843.CrossRefGoogle Scholar
  37. 37.
    Sattler, J.J.H.B., Mens, A.M., and Weckhuysen, B.M., ChemCatChem, 2014, vol. 6, p. 3139.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Merk
    • 1
  • M. A. Salaev
    • 1
  • O. V. Vodyankina
    • 1
  • G. V. Mamontov
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations