Skip to main content
Log in

The Effect of the Copper Oxide Content and Support Structure in (0.5−15%)СuО/ZrO2 Catalysts on Their Activity in the CO Oxidation Reaction with Oxygen in an Excess of Hydrogen

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The dependence of the activity of СuO/ZrO2 catalysts in the CO oxidation reaction with oxygen in the presence of an excess of hydrogen and adsorption of СО over them on the CuO content (0.5 to 15%) and the structure of the support ZrO2, monoclinic (М), tetragonal (Т), or mixed (М + Т) has been studied. It has been found that the activity of CuO/ZrO2 is associated with the adsorption capacity of the samples for СО at 20°С. Thus, 5%CuO/ZrO2(Т + М) and 5% CuO/ZrO2(Т) samples, which exhibit the maximum activity (the СО conversion over them is 80–85% at 160°С), also possess a high chemisorption capacity towards CO (~2.2 × 1020 molecules/g). At the same time, CuO/ZrO2(М) samples with the CuO contents of 1 and 5% do not chemisorb СО and are inactive in the reaction at 160°С. The СО conversion over them does not exceed 32–36% at 250°С. On the basis of the data obtained by X-ray phase analysis, temperature-programmed reduction with Н2, temperature-programmed СО desorption, and electron paramagnetic resonance, a conclusion has been made that at low temperatures СО oxidation proceeds over CunOm clusters that are located on ZrO2(Т) crystallites. With the increase in the copper oxide content from 0.5 to 5%, the activity of the clusters increases, while the reaction temperature decreases. CuOm oxo complexes and particles of the СuO phase do not exhibit catalytic activity. The reasons for the low activity of the CuO/ZrO2(М) samples with the CuO contents of 1 and 5% in the СО oxidation and adsorption processes are discussed. The mechanism of the low-temperature СО oxidation with oxygen in an excess of hydrogen over a 5% CuO/ZrO2(Т + М) catalyst is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ola, D., Geppert, A., and Prokash, S., Metanol i energetika budushchego, kogda zakonchatsya neft' i gaz (Methanol and the energy of the future, when oil and gas run out), Moscow: Binom, 2009.

    Google Scholar 

  2. Mishra, A. and Prasad, R., Bull. Chem. React. Eng. Catal., 2011, vol. 6, no. 1, p.1.

    Article  CAS  Google Scholar 

  3. Royer, S. and Duprez, D., ChemCatCem, 2011, vol. 3, p.24.

    Article  CAS  Google Scholar 

  4. Polster, C.S., Nair, H., and Baertsch, C.D., J. Catal., 2009, vol. 266, p.308.

    Article  CAS  Google Scholar 

  5. Kydd, R., Ferri, D., Hug, P., Scott, J., Teoh, Y., and Amal, R., J. Catal., 2011, vol. 277, p.64.

    Article  CAS  Google Scholar 

  6. Maciel, C.G., Belgacem, M.N., and Assaf, J.M., Catal. Lett., 2011, vol. 141, p.316.

    Article  CAS  Google Scholar 

  7. Wang, S-P., Zheng, X-C., Wang, X-Y., Wang, S-R., Zhang, S-M., Yu, Li-H., Huang, W-P., and Wu, S-H., Catal. Lett., 2005, vol. 105, p.163.

    Article  CAS  Google Scholar 

  8. Dow, W-P., Wang, Y-P., and Huang, T-J, J. Catal., 1996, vol. 160, p.155.

    Article  CAS  Google Scholar 

  9. Dow, W-P. and Huang, T-J., J. Catal., 1996, vol. 160, p.171.

    Article  CAS  Google Scholar 

  10. Luo, M-F., Ma, J-M., Lu, J-Q., Song, Y-P., and Wang, Y-J., J. Catal., 2007, vol. 246, p.52.

    Article  CAS  Google Scholar 

  11. Il'ichev, A.N., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2015, vol. 56, no. 1, p.115.

    Article  CAS  Google Scholar 

  12. Il’ichev, A.N., Shashkin, D.P., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2015, vol. 56, no. 2, p.197.

    Article  CAS  Google Scholar 

  13. Firsova, A.A., Khomenko, T.I., Sil’chenkova, O.V., and Korchak, V.N., Kinet. Catal., 2010, vol. 51, no. 2, p.299.

    Article  CAS  Google Scholar 

  14. Il’ichev, A.N, Firsova, A.A., and Korchak, V.N., Kinet. Catal., 2006, vol. 47, no. 4, p.585.

    Article  CAS  Google Scholar 

  15. Il’ichev, A.N., Fattakhova, Z.T., Shashkin, D.P., Matyshak, V.A., and Korchak, V.N., Kinet. Catal., 2017, vol. 58, no. 3, p.300.

    Article  Google Scholar 

  16. Powder Diffraction Fale, Alphabetical Indoxos, Inorganic phases, JCPDS, International Center for Diffraction Data. Pennsylvania, USA, 1992, p.793.

  17. Tret'yakov, I.I., Shub, B.R., and Sklyarov, A.V., Zh. Fiz. Khim., 1970, vol. 44, p. 2112.

    CAS  Google Scholar 

  18. Rukovodstvo po neorganicheskomu sintezu (Guide to Inorganic Synthesis), Brauer, G., Ed., Moscow: Mir, 1985, vol.2.

  19. Pillai, U.R. and Deevi, S., Appl. Catal., B., 2006, vol. 64, p.146.

    Article  CAS  Google Scholar 

  20. Krylov, O.V., Geterogennyi kataliz (Heterogeneous catalysis), Moscow: Akademkniga, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Il’ichev.

Additional information

Original Russian Text © A.N. Il’ichev, M.Ya. Bykhovskii, Z.T. Fattakhova, D.P. Shashkin, V.A. Matyshak, V.N. Korchak, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 2, pp. 206–214.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ichev, A.N., Bykhovskii, M.Y., Fattakhova, Z.T. et al. The Effect of the Copper Oxide Content and Support Structure in (0.5−15%)СuО/ZrO2 Catalysts on Their Activity in the CO Oxidation Reaction with Oxygen in an Excess of Hydrogen. Kinet Catal 59, 179–187 (2018). https://doi.org/10.1134/S002315841802009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841802009X

Keywords

Navigation