Advertisement

Kinetics and Catalysis

, Volume 59, Issue 2, pp 196–202 | Cite as

Physicochemical Properties of Nanoparticles: Interaction of Supported Platinum Nanoparticles with Gaseous Reactants

  • A. K. Gatin
  • M. V. Grishin
  • S. Yu. Sarvadii
  • V. G. Slutskii
  • V. A. Kharitonov
  • B. R. Shub
  • A. I. Kulak
Article

Abstract

The shapes, sizes, and electronic structures of platinum nanoparticles supported onto highly oriented pyrolytic graphite and oxidized silicon by different methods and their adsorptive properties with respect to hydrogen, oxygen, water, and ammonia were established. The apparent activation energy of the reduction of single oxidized platinum nanoparticles with molecular hydrogen was determined. The possibility of controlling the rate of ammonia decomposition by a nanostructured platinum coating by the application of electric potentials of different values and polarities to it was demonstrated.

Keywords

platinum nanoparticles supports adsorptive properties hydrogen oxygen water ammonia scanning tunneling microscopy spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepanov, A.L., Golubev, A.N., Nikitin, S.I., and Osin, Y.N., Rev. Adv. Mater. Sci., 2014, vol. 38, p.160.Google Scholar
  2. 2.
    Durndell, L.J., Parlett, C.M.A., Hondow, N.S., Isaacs, M.A., Wilson, K., and Lee, A.F., Sci. Rep., 2015, vol. 5, p. 9425.CrossRefGoogle Scholar
  3. 3.
    Vaidya, P.D. and Mahajani, V.V., Ind. Eng. Chem. Res., 2003, vol. 42, p. 3881.CrossRefGoogle Scholar
  4. 4.
    Kijenski, J., Winiarek, P., Paryjczak, T., Lewicki, A., and Mikolajska, A., Appl. Catal., A., 2002, vol. 233, p.171.CrossRefGoogle Scholar
  5. 5.
    Taylor, M.J., Durndell, L.J., Isaacs, M.A., Parlett, C.M.A., Wilson, K., Lee, A.F., and Kyriakou, G., Appl. Catal., B, 2016, vol. 180, p.580.CrossRefGoogle Scholar
  6. 6.
    Bukhtiyarov, V.I. and Slin’ko, M.G., Usp. Khim., vol. 70, no. 2, p.179.Google Scholar
  7. 7.
    Roldan Cuenya, B., Thin Solid Films, 2010, vol. 518, p. 3127.CrossRefGoogle Scholar
  8. 8.
    Ahmadi, M., Behafarid, F., and Roldan Cuenya, B., Nanoscale, 2016, vol. 8, p. 11635.CrossRefGoogle Scholar
  9. 9.
    Robel, I., Girishkumar, G., Bunker, B.A., Kamat, P.V., and Vinodgopal, K., Appl. Phys. Lett., 2006, vol. 88, p. 073113.CrossRefGoogle Scholar
  10. 10.
    Roldan Cuenya, B. and Behafarid, F., Surf. Sci. Rep., 2015, vol. 70, p.135.CrossRefGoogle Scholar
  11. 11.
    Bratlie, K.M., Kliewer, C.J., and Somorjai, G.A., J. Phys. Chem., 2006, vol. 110, p. 17925.CrossRefGoogle Scholar
  12. 12.
    Tsung, C.-K., Kuhn, J.N., Huang, W., Aliaga, C., Hung, L.-I., and Somorjai, G.A., J. Am. Chem. Soc., 2009, vol. 131, p. 5816.CrossRefGoogle Scholar
  13. 13.
    Kuhn, J.N., Huang, W., Tsung, C.-K., Zhang, Y., and Somorjai, G.A., J. Am. Chem. Soc., 2008, vol. 130, p. 14026.CrossRefGoogle Scholar
  14. 14.
    Rioux, R.M., Song, H., Hoefelmeyer, J.D., Yang, P., and Somorjai, G.A., J. Phys. Chem. B, 2005, vol. 109, p. 2192.CrossRefGoogle Scholar
  15. 15.
    Song, H., Rioux, R.M., Hoefelmeyer, J.D., Komor, R., Niesz, K., Grass, M., and Somorjai, G.A., J. Am. Chem. Soc., 2006, vol. 128, p. 3027.CrossRefGoogle Scholar
  16. 16.
    Wang, G., Morikawa, Y., Matsumoto, T., and Nakamura, J., J. Phys. Chem. B, 2006, vol. 110, p.9.CrossRefGoogle Scholar
  17. 17.
    Mistry, H., Behafarid, F., Zhou, E., Ono, L.K., Zhang, L., and Roldan Cuenya, B., ACS Catal., 2014, vol. 4, p.109.CrossRefGoogle Scholar
  18. 18.
    Panagiotopoulou, P. and Kondarides, D.I., Catal. Today, 2006, vol. 112, p.49.CrossRefGoogle Scholar
  19. 19.
    Rostovshchikova, T.N., Smirnov, V.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Ros. Nanotekhnologii, 2007, vol. 1–2, p.47.Google Scholar
  20. 20.
    Petkov, V., Peng, Y., Williams, G., Huang, B., Tomalia, D., and Ren, Y., Phys. Rev., 2005, vol. 72, p. 195402.CrossRefGoogle Scholar
  21. 21.
    Scanning Tunnelling Microscopy, I., General Principles and Applications to Clean and Absorbate-Covered Surfaces, Guntherodt, H.-J., and Wiesendanger, R., Eds., Berlin: Springer, 1994.Google Scholar
  22. 22.
    Binnig, G., Rohrer, H., Berber, C., and Weibel, E., Appl. Phys. Lett., 1981, vol. 40, no. 2, p.178.CrossRefGoogle Scholar
  23. 23.
    Meyer, E., Hug, H.J., and Bennewitz, R., Scanning Probe Microscopy, Berlin: Springer, 2004.CrossRefGoogle Scholar
  24. 24.
    Hamers, R.J. and Wang, Y.J., Chem. Rev., 1996, vol. 96, no. 4, p. 1261.CrossRefGoogle Scholar
  25. 25.
    Hamers, R.J., Tromp, R.M., and Demuth, J.E., Phys. Rev. Lett., 1986, vol. 56, no. 18, p. 1972.CrossRefGoogle Scholar
  26. 26.
    Gatin, A.K., Grishin, M.V., Dalidchik, F.I., Kovalevskii, S.A., and Kolchenko, N.N., Khim. Fiz., 2006, vol. 25, no. 6, p.17.Google Scholar
  27. 27.
    McBride, J.R., Graham, G.W., Peters, C.R., and Weber, W.H., Appl. Phys., 1991, vol. 69, p. 1596.CrossRefGoogle Scholar
  28. 28.
    Hass, K.S. and Carlsson, A.E., Phys. Rev. B, vol. 47, no. 7, p. 4246.Google Scholar
  29. 29.
    Chii, S.I., DeVerat, A.L., and Hawley, M.C., Fuel, 1986, vol. 65, p. 1432.CrossRefGoogle Scholar
  30. 30.
    Goethel, P.J. and Yang, A.T., J. Catal., 1989, vol. 119, p.201.CrossRefGoogle Scholar
  31. 31.
    Oh, S.G., Rodriguez, N.M., and Baker, R.T.K., J. Catal., 1992, vol. 136, p.584.CrossRefGoogle Scholar
  32. 32.
    Yang, H.J., Minato, T., Kawai, M., and Kim, Y., J. Phys. Chem. C, vol. 117, p. 16429.Google Scholar
  33. 33.
    Pachecka, M., Sturm, J.M., Lee, C.J., and Bijkerk, F., J. Phys. Chem. C, 2017, vol. 121, p. 6729.CrossRefGoogle Scholar
  34. 34.
    Besenbacher, F., Rep. Prog. Phys., 1996, vol. 59, p. 1737.CrossRefGoogle Scholar
  35. 35.
    Powell, A.R., Platinum Met. Rev., 1958, vol. 2, no. 3, p.95.Google Scholar
  36. 36.
    Jehn, H., J. Less-Common Met., 1981, vol.78.Google Scholar
  37. 37.
    Seriani, N., Jin, Z., Pompe, W., and Colombi, C.L., Phys. Rev. B, 2007, vol. 76, p. 155421.CrossRefGoogle Scholar
  38. 38.
    L’vov, B.V. and Galwey, A.K., J. Therm. Anal. Calorim., 2012, vol. 110, no. 2, p.601.CrossRefGoogle Scholar
  39. 39.
    Ogle, K.M. and White, J.M., Surf. Sci., 1984, vol. 139, p.43.CrossRefGoogle Scholar
  40. 40.
    Pacia, N. and Dumesic, J.A., J. Catal., 1976, vol. 41, p.155.CrossRefGoogle Scholar
  41. 41.
    Casalongue, H.S., Kaya, S., Viswanathan, V., Miller, D.J., Friebel, D., Hansen, H.A., Norskov, J.K., Nilsson, A., and Ogasawara, H., Nat. Commun., 2013, vol. 4, p. 2817.CrossRefGoogle Scholar
  42. 42.
    Grishin, M.V., Gatin, A.K., Dokhlikova, N.V., Kolchenko, N.N., Sarvadii, S.Y., and Shub, B.R., Nanotechnologies in Russia, 2016, vol. 11, nos. 11–12, p.727.CrossRefGoogle Scholar
  43. 43.
    Gatin, A.K., Grishin, M.V., Sarvadii, S.Y., Slutskii, V.G., Kharitonov, V.A., and Shub, B.R., Nanotechnologies in Russia, 2016, vol. 11, nos. 1–2, p.12.Google Scholar
  44. 44.
    Grishin, M.V., Dalidchik, F.I., Kovalevskii, S.A., Shub, B.R., and Gatin, A.K., Russ. J. Phys. Chem. B., 2007, vol. 1, no. 5, p.472.CrossRefGoogle Scholar
  45. 45.
    Praktikum po fizicheskoi khimii (Workshop on Physical Chemistry) Kudryashov, I.V., Ed., Moscow: Vysshaya Shkola, 1986, p.496.Google Scholar
  46. 46.
    Wallin, M., Gronbeck, H., Lloyd Spetz, A., and Skoglundh, M., Appl. Surf. Sci., 2004, vol. 235, p.487.CrossRefGoogle Scholar
  47. 47.
    John, L. and Kollin, B., Surf. Sci., 1981, vol. 104, nos. 2–3, p.478.Google Scholar
  48. 48.
    Rasim, K., Bobeth, M., Pompe, W., and Seriani, N., J. Mol. Catal. A.: Chem., 2010, vol. 325, p.15.CrossRefGoogle Scholar
  49. 49.
    Grishin, M., Gatin, A., Kharitonov, V., and Shub, B., Appl. Phys. Lett., 2011, vol. 99, p. 133104.CrossRefGoogle Scholar
  50. 50.
    Grishin, M.V., Gatin, A.K., Slutskii, V.G., Kharitonov, V.A., and Shub, B.R., Russ. J. Phys. Chem. B, 2014, vol. 8, no. 3, p. 416CrossRefGoogle Scholar
  51. 51.
    Rhoderick, E.H., Metal-Semiconductor Contacts, Oxford: Clarendon, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. K. Gatin
    • 1
  • M. V. Grishin
    • 1
  • S. Yu. Sarvadii
    • 1
  • V. G. Slutskii
    • 1
  • V. A. Kharitonov
    • 1
  • B. R. Shub
    • 1
  • A. I. Kulak
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of General and Inorganic ChemistryBelarussian Academy of SciencesMinskBelarus

Personalised recommendations