Skip to main content
Log in

Mechanochemical Activation of Cu–CeO2 Mixture as a Promising Technique for the Solid-State Synthesis of Catalysts for the Selective Oxidation of CO in the Presence of H2

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A new ecologically clean method for the solid-phase synthesis of oxide copper–ceria catalysts with the use of the mechanochemical activation of a mixture of Cu powder (8 wt %) with CeO2 was developed. It was established that metallic copper was oxidized by oxygen from CeO2 in the course of mechanochemical activation. The intensity of a signal due to metallic Cu in the X-ray diffraction analysis spectra decreased with the duration of mechanochemical activation. The Cu1+, Cu2+, and Ce3+ ions were detected on the sample surface by X-ray photoelectron spectroscopy. The application of temperature-programmed reduction (TPR) made it possible to detect two active oxygen species in the reaction of CO oxidation in the regions of 190 and 210–220°C by a TPR-H2 method and in the regions of 150 and 180–190°C by a TPR-CO method. It is likely that the former species occurred in the catalytically active nanocomposite surface structures containing Cu–O–Ce bonds, whereas the latter occurred in the finely dispersed particles of CuO on the surface of CeO2. The maximum conversion of CO (98%, 165°C) reached by the mechanochemical activation of the sample for 60 min was almost the same as conversion on a supported CuO/CeO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avgoropoulos, G., Ioannides, T., Papadopoulou, Ch., Baatista, J., Hocevar, S., and Matralis, H., Catal. Today, 2002, vol. 75, p.157.

    Article  Google Scholar 

  2. Avgoropoulos, G. and Ioannides, T., Appl. Catal., A., 2003, vol. 244, p.155.

    Article  CAS  Google Scholar 

  3. Kahlich, M.J., Gasteiger, H.A., and Behm, R.J., J. Catal., 1997, vol. 171, p.93.

    Article  CAS  Google Scholar 

  4. Lee, S.J., Mukerjee, S., and Ticinelli, E.A., Electrochim. Acta, 1999, vol. 44, p. 3283.

    Article  CAS  Google Scholar 

  5. Avgoropoulos, G., Ioannides, T., Matralis, H., Baatista, J., and Hocevar, S., Catal. Lett., 2001, vol. 73, p.33.

    Article  Google Scholar 

  6. Igarashi, H., Uchida, H., Suzuki, M., and Watanabe, M., Appl. Catal., A, 1997, vol. 159, p. 159

    Article  CAS  Google Scholar 

  7. Ito, S.-I., Fujimori, T., Nagashima, K., Yuzaki, K., and Kumimori, K., Catal. Today, 2000, vol. 57, p.247.

    Article  CAS  Google Scholar 

  8. Schubert, M.M., Venugopal, A., Kahlich, M.J., Plzak, V., and Behm, R.J., J. Catal., 2004, vol. 222, p.32.

    Article  CAS  Google Scholar 

  9. Luengnaruemitchai, A., Osuwan, S., and Gulari, E., Int. J. Hydrogen Energy, 2004, vol. 29, p.429.

    Article  CAS  Google Scholar 

  10. Deng, W., de Jesus, J., Saltsburg, Y., and Flytzani-Stephanopoulos, M., Appl. Catal., A, 2005, vol. 291, p.126.

    Article  CAS  Google Scholar 

  11. Sedmak, G., Hacevak, S., and Levec, J., J. Catal., 2003, vol. 213, p.135.

    Article  CAS  Google Scholar 

  12. Marban, J. and Fuertes, A.B., Appl. Catal., B, 2005, vol. 57, no. 1, p.43.

    Article  CAS  Google Scholar 

  13. Liu, Y., Fu, Q., and Flytzani-Stefanopoulos, M., Catal. Today, 2004, vols. 93–95, p.241.

    Article  CAS  Google Scholar 

  14. Oh, S.H. and Sinkevitch, R.M., J. Catal., 1993, vol. 142, p.254.

    Article  CAS  Google Scholar 

  15. Kim, D.H. and Cha, J.E., Catal. Lett., 2003, vol. 86, p.107.

    Article  CAS  Google Scholar 

  16. Martinez-Arias, A., Hungria, A.B., Fernandez-Garcia, M., Conesa, J.C., and Munuera, G., J. Power Sources, 2005, vol. 151, p. 32

    Article  CAS  Google Scholar 

  17. Martinez-Arias, A., Hungria, A.B., Munuera, G., and Gamarra, D., Appl. Catal., B, vol. 65, p.207.

  18. Marino, F., Descorme, C., and Duprez, D., Appl. Catal., B, vol. 58, p.175.

  19. Jobbagy, M., Marino, F., Schonbrod, B., Baronetti, G., and Laborde, M., Chem. Mater., 2006, vol. 18, p. 1945.

    Article  CAS  Google Scholar 

  20. Gurbani, A., Ayastuy, J.L., Gonzales-Marcos, M.P., Herrero, J.E., Guil, J.M., and Gutierrez-Ortiz, M.A., Int. J. Hydrogen Energy, 2009, vol. 34, p.547.

    Article  CAS  Google Scholar 

  21. Martinez-Arias, A., Fernandez-Garcia, M., Galvez, O., Coronado, J.M., Anderson, J.A., Conesa, J.C., Soria, J., and Munuera, G., J. Catal., 2000, vol. 195, p.207.

    Article  CAS  Google Scholar 

  22. Martinez-Arias, A., Hundria, A.B., Fernandez-Garcia, M., Conesa, J.C., and Munuera, G., J. Phys. Chem. B., 2004, vol. 108, p. 17983.

    Article  CAS  Google Scholar 

  23. Il’ichev, A.N., Firsova, A.A., and Korchak, V.N., Kinet. Catal., 2006, vol. 47, no. 4, p.602.

    Article  Google Scholar 

  24. Gamarra, D., Hornes, A., Koppany, Z., Schay, Z., Munuera, G., Soria, J., and Martinez-Arias, A., J. Power Sources, 2007, vol. 169, p.110.

    Article  CAS  Google Scholar 

  25. Luo, V.-F., Song, Y.-P., Lu, J.Q., Wang, X.-Y., and Pu, Z.-Y., J. Phys. Chem. C, vol. 111, p. 12686.

  26. Manzoli, M., di Monte, R., Boccuzzi, F., Coluccia, S., and Kaspar, J., Appl. Catal., B, vol. 61, p.192.

  27. Wang, J.B. and Huang, T.-J., J. Catal., 2002, vol. 208, p. 370

    Article  CAS  Google Scholar 

  28. Firsova, A.A., Il’ichev, A.N., Khomenko, T.I., Gorobinskii, L.V., Maksimov, Yu.V., Suzdalev, I.P., and Korchak, V.N., Kinet. Catal., 2007, vol. 48, no. 2, p.282.

    Article  CAS  Google Scholar 

  29. Firsova, A.A., Khomenko, T.I., Il’ichev, A.N., and Korchak, V.N., Kinet. Catal., 2008, vol. 49, no. 5, p.682.

    Article  CAS  Google Scholar 

  30. Firsova, A.A., Khomenko, T.I., Sil’chenkova, O.N., and Korchak, V.N., Kinet. Catal., 2010, vol. 51, no. 2, p.299.

    Article  CAS  Google Scholar 

  31. Martinez-Arias, A., Soria, J., Cataluna, R., Conesa, J.C., and Cortes, C., Stud. Surf. Sci. Catal., 1998, vol. 116, p.591.

    Article  CAS  Google Scholar 

  32. Liu, W., Sarofim, A.F., and Flytzani-Stephanopoulos, M., Chem. Eng. Sci., 1995, vol. 49, p. 4871.

    Article  Google Scholar 

  33. Avgoropoulos, G., Ioannides, T., and Matralis, H., Appl. Catal., B, vol. 36, p.87.

  34. Wang, X.Q., Rodriguez, J.A., Hanson, J.C., Gamarra, D., Martinez-Arias, A., and Fernandez-Garcia, M., J. Phys. Chem. B, vol. 109, p. 19595.

  35. Iglesia, E., Proc. 9th European Congress on Catalysis, EuropaCat IX, Salamanca, 2009.

    Google Scholar 

  36. Ishikawa, A., Neurock, V., and Iglesia, E., J. Am. Chem. Soc., 2007, vol. 129, p. 13201.

    Article  CAS  PubMed  Google Scholar 

  37. Gololobov, A.M., Bekk, I.E., Bragina, G.O., Zaikovskii, V.I., Ayupov, A.B., Telegina, N.S., Bukhtiyarov, V.I., and Stakheev, A.Yu., Kinet. Catal., 2009, vol. 50, no. 6, p.830.

    Article  CAS  Google Scholar 

  38. Gomez-Cortes, A., Marquez, Y., Arenas-Alatorre, J., and Diaz, G., Catal. Today, 2008, vols. 133–135, p.743.

    Article  CAS  Google Scholar 

  39. Firsova, A.A., Khomenko, T.I., Il’ichev, A.N., and Korchak, V.N., Kinet. Catal., 2011, vol. 52, no. 3, p.434.

    Article  CAS  Google Scholar 

  40. Benfer, S. and Knozinger, E., J. Mater. Chem., 1999, vol. 9, p. 1203.

    Article  CAS  Google Scholar 

  41. Beyer, M.K. and Clausen-Shaumann, H., Chem. Rev., 2005, vol. 105, p. 2921.

    Article  CAS  PubMed  Google Scholar 

  42. Krylov, O.V., Firsova, A.A., Bobyshev, A.A., Radtsig, V.A., Shashkin, D.P., and Margolis, L.Ya., Catal. Today, 1992, vol. 13, p.381.

    Article  CAS  Google Scholar 

  43. Motozuka, S., Tagaya, M., Ikoma, T., Morinaga, M., Yoshioka, T., and Tanaka, J., J. Phys. Chem. C, vol. 117, p. 16104.

  44. Firsova, A.A., Morozova, O.S., Leonov, A.V., Streletskii, A.N., and Korchak, V.N., Kinet. Catal., 2014, vol. 55, no. 6, p.777.

    Article  CAS  Google Scholar 

  45. Streletskii, A.N., in Proc. 2nd Int. Conf. on Structural Applications of Mechanical Alloying, Barbadillo, J.J., Ed., 1993, p.51.

  46. Zeng, Sh., Zhang, W., Sliwa, M.I., and Su, H., Int. J. Hydrogen Energy, 2013, vol. 38, p. 3597.

    Article  CAS  Google Scholar 

  47. Komateedi, N.R., Venkataswamy, P., and Benjaram, M.R., Ind. Eng. Chem. Res., 2011, vol. 50, p. 11960.

    Article  CAS  Google Scholar 

  48. Skarman, B., Nakayama, T., Grandjean, D., Benfield, R.E., Olsson, E., Niihara, K., and Wallenberg, L.R., Chem. Mater., 2002, vol. 14, p. 3686.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Firsova.

Additional information

Original Russian Text © A.A. Firsova, O.S. Morozova, G.A. Vorob’eva, A.V. Leonov, A.I. Kukharenko, S.O. Cholakh, E.Z. Kurmaev, V.N. Korchak, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 2, pp. 188–200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firsova, A.A., Morozova, O.S., Vorob’eva, G.A. et al. Mechanochemical Activation of Cu–CeO2 Mixture as a Promising Technique for the Solid-State Synthesis of Catalysts for the Selective Oxidation of CO in the Presence of H2. Kinet Catal 59, 160–173 (2018). https://doi.org/10.1134/S0023158418020076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158418020076

Keywords

Navigation