MONTE CARLO CALCULATION OF THERMODYNAMIC AND STRUCTURAL CHARACTERISTICS OF LIQUID HYDROCARBONS

Abstract

All-atom models of liquid hydrocarbons (n-pentane, n-hexane, n-octane, neohexane, isooctane, cyclohexane, cyclohexene, toluene, benzene) are studied by the Monte Carlo method at atmospheric pressure and room temperature. The approach based on a simplified consideration of deformation energy of valence bonds and bond angles allows developing highly efficient supercomputer programs to study large biopolymer systems within the framework of classical physics. Structural and thermodynamic characteristics of hydrocarbons (molar heat of vaporization, density, specific heat (cP), isothermal compressibility, volumetric coefficient of thermal expansion) calculated within this approach agree well with experimental values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    * We propose to use this approach to study substances containing not only carbon and hydrogen atoms but also other chemical elements.

  2. 2.

    * Four fragments: two CH3 groups (partial charges are qC = –0.162 |e|, qH = 0.054 |e|) and two CH2 groups (qC = –0.094 |e|, qH = 0.047 |e|). The length of the C–H bond is 1.08 Å, the H–C–H angle is 109.47°.

  3. 3.

    * http://www.kiam.ru

  4. 4.

    * http://webbook.nist.gov

  5. 5.

    * Note that the choice of other “centers” for RDFs complicates the interpretation of calculation results and enhances the risk of a terminological confusion.

REFERENCES

  1. 1

    N. A. Metropolis and S. Ulam. J. Am. Stat. Assoc., 1949, 44, 335.

  2. 2

    J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen: London, 1964.

  3. 3

    M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. 2nd ed. Wiley-VCH: Weinheim, 2008.

  4. 4

    D. Dubbeldam, A. Torres-Knoop, and K. S. Walton. Mol. Simul., 2013, 39, 1253.

  5. 5

    Monte Carlo Methods in Chemical Physics / Eds. D. M. Ferguson, J. I. Siepmann, and D. G. Truhlar. Series Eds. I. Prigogine and S. A. Rice. Adv. Chem. Phys., vol. 105. John Wiley & Sons, 1999.

  6. 6

    W. F. van Gunsteren. AIP Conf. Proc., 1991, 239, 131.

  7. 7

    M. Born and R. Oppenheimer. Ann. Phys. (Berlin, Ger.), 1927, 389, 457.

  8. 8

    N. Gō and H. A. Scheraga. J. Chem. Phys., 1969, 51, 4751.

  9. 9

    P. Dauber-Osguthorpe and A. T. Hagler. J. Comput.-Aided Mol. Des., 2019, 33, 133.

  10. 10

    T. E. Gartner III and A. Jayaraman. Macromolecules, 2019, 52, 755.

  11. 11

    W. J. C. Orr. Trans. Faraday Soc., 1947, 43, 12.

  12. 12

    K. Kremer and K. Binder. Comput. Phys. Rep., 1988, 7, 259.

  13. 13

    D. G. Covell and R.L. Jernigan. Biochemistry, 1990, 29, 3287.

  14. 14

    J. Skolnick and A. Kolinski. Science, 1990, 250, 1121.

  15. 15

    K. B. Wiberg. J. Am. Chem. Soc., 1965, 87, 1070.

  16. 16

    M. Bixon and S. Lifson. Tetrahedron, 1967, 23, 769.

  17. 17

    M. Levitt and S. Lifson. J. Mol. Biol., 1969, 46, 269.

  18. 18

    J. L. Sussman and E. N. Trifonov. Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 103.

  19. 19

    M. Levitt. Proc. Natl. Acad. Sci. U. S. A., 1978, 75, 640.

  20. 20

    W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. J. Am. Chem. Soc., 1995, 117, 5179.

  21. 21

    W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. J. Am. Chem. Soc., 1996, 118, 11225.

  22. 22

    A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. Karplus. J. Phys. Chem. B, 1998, 102, 3586.

  23. 23

    C. Oostenbrink, A. Villa, A. E. Mark, and F. van Gunsteren. J. Comput. Chem., 2004, 25, 1656.

  24. 24

    M. Levitt and A. Warshel. Nature, 1975, 253, 694.

  25. 25

    M. Levitt. J. Mol. Biol., 1976, 104, 59.

  26. 26

    P. D. Dans, A. Zeida, M. R. Machado, and S. Pantano. J. Chem. Theory Comput., 2010, 6, 1711.

  27. 27

    A. J. Rader. Curr. Opin. Pharmacol., 2010, 10, 753.

  28. 28

    S. Takada. Curr. Opin. Struct. Biol., 2012, 22, 130.

  29. 29

    M. J. Boniecki, G. Lach, W. K. Dawson, K. Tomala, P. Lukasz, T. Soltysinski, K. M. Rother, and J. M. Bujnicki. Nucleic Acids Res., 2016, 44(7), e63.

  30. 30

    S. D. Stellman and P. J. Gans. Macromolecules, 1972, 5, 516.

  31. 31

    W. Braun. Biopolymers, 1987, 26, 1691.

  32. 32

    L. R. Dodd, T. D. Boone and D. N. Theodorou. Mol. Phys., 1993, 78, 961.

  33. 33

    E. W. Knapp and A. Irgens-Defregger. J. Comput. Chem., 1993, 14, 19.

  34. 34

    F. Sartori, B. Melchers, H. Böttcher, and E. W. Knapp. J. Chem. Phys., 1998, 108, 8264.

  35. 35

    V. G. Mavrantzas, T. D. Boone, E. Zervopoulou, and D. N. Theodorou. Macromolecules, 1999, 32, 5072.

  36. 36

    M. Cahill, S. Cahill, and K. Cahill. Biophys. J., 2002, 82, 2665.

  37. 37

    A. A. Lugovskoi and V. G. Dashevskii. J. Struct. Chem., 1972, 13(1), 105.

  38. 38

    R. E. Bruccoleri and M. Karplus. Macromolecules, 1985, 18, 2767.

  39. 39

    J. P. Ulmschneider and W. L. Jorgensen. J. Chem. Phys., 2003, 118, 4261.

  40. 40

    V. G. Tumanyan and N. G. Esipova. Biopolymers, 1975, 14, 2231.

  41. 41

    V. B. Zhurkin, Yu. P. Lysov, and V. I. Ivanov. FEBS Lett., 1975, 59, 44.

  42. 42

    A. E. Kister and V. G. Dashevsky. Biopolymers, 1976, 15, 1009.

  43. 43

    V. E. Khutorsky and V. I Poltev. Nature, 1976, 264, 483.

  44. 44

    V. B. Zhurkin, Yu. P. Lysov, and V. I. Ivanov. Biopolymers, 1978, 17, 377.

  45. 45

    M. Fixman. Proc. Natl. Acad. Sci. U. S. A., 1974, 71, 3050.

  46. 46

    N. K. Balabayev and E. E. Shnol′. Polym. Sci. U. S. S. R., 1979, 21, 1799.

  47. 47

    S. He and H. A. Scheraga. J. Chem. Phys., 1998, 108, 271.

  48. 48

    N. Gō and H. A. Scheraga. Macromolecules, 1970, 3, 178.

  49. 49

    H. Sklenar, D. Wüstner, and R. Rohs. J. Comput. Chem., 2006, 27, 309.

  50. 50

    P. Minary and M. Levitt. J. Comput. Biol., 2010, 17, 993.

  51. 51

    A. V. Teplukhin. Polym. Sci., Ser. C, 2013, 55, 103.

  52. 52

    N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller J. Chem. Phys., 1953, 21, 1087.

  53. 53

    F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. J. Chem. Soc., Perkin Trans. 2, 1987, S1.

  54. 54

    R. A. Engh and R. Huber. Acta Crystallogr., Sect. A, 1991, 47, 392.

  55. 55

    M. Jaskolski, M. Gilski, Z. Dauter, and A. Wlodawer. Acta Crystallogr., Sect. D, 2007, 63, 611.

  56. 56

    CRC Handbook of Chemistry and Physics / Ed. D. R. Lide. CRC Press/Taylor and Francis: Boca Raton, 2010.

  57. 57

    A. M. Nikitin, Yu. V. Milchevskiy, and A. P. Lyubartsev. J. Mol. Model., 2014, 20, 2143.

  58. 58

    L. S. Bartell and D. A. Kohl. J. Chem. Phys., 1963, 39, 3097.

  59. 59

    T. Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer: N.Y., 2010, ch. 9.

  60. 60

    H. R. Warner. Ind. Eng. Chem. Fundam., 1972, 11, 379.

  61. 61

    M. Bishop, D. Ceperley, H. L. Frisch, and M. H. Kalos. J. Chem. Phys., 1980, 72, 3228.

  62. 62

    E. Sigfridsson and U. Ryde. J. Comput. Chem., 1998, 19, 377.

  63. 63

    G. Del Re. J. Chem. Soc., 1958, 4031.

  64. 64

    A. Streitwieser. Molecular Orbital Theory for Organic Chemists. John Wiley & Sons: N.Y., 1961.

  65. 65

    V. B. Zhurkin, V. I. Poltev, and V. L. Florentiev. Mol. Biol. (Moscow), 1980, 14, 882.

  66. 66

    D. A. C. Compton, S. Montero, and W. F. Murphy. J. Phys. Chem. 1980, 84, 3587.

  67. 67

    N. L. Allinger, R. S. Grev, B. F. Yates, and H. F. Schaefer III. J. Am. Chem. Soc., 1990, 112, 114.

  68. 68

    W. A. Herrebout, B. J. van der Veken, A. Wang, and J. R. Durig. J. Phys. Chem., 1995, 99, 578.

  69. 69

    R. K. Heenan and L. S. Bartell. J. Chem. Phys., 1983, 78, 1270.

  70. 70

    M. A. Murcko, H. Castejon, and K. B. Wiberg. J. Phys. Chem., 1996, 100, 16162.

  71. 71

    G. D. Smith and R. L. Jaffe. J. Phys. Chem., 1996, 100, 18718.

  72. 72

    N. L. Allinger, J. T. Fermann, W. D. Allen, and H. F. Schaefer III. J. Chem. Phys., 1997, 106, 5143.

  73. 73

    E. L. Eliel, N. L. Allinger, S. J. Angyal, G. A. Morrison. Conformational Analysis. Interscience-Wiley: N.Y., 1965.

  74. 74

    X. Daura, A. E. Mark, and W. F. van Gunsteren. J. Comput. Chem., 1998, 19, 535.

  75. 75

    J. R. Durig, W. E. Bucy, and A. R. H. Cole. Can. J. Phys., 1975, 53, 1832.

  76. 76

    R. Engeln, D. Consalvo, and J. Reuss. Chem. Phys., 1992, 160, 427.

  77. 77

    M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press: N.Y., 1987.

  78. 78

    A. V. Teplukhin. J. Struct. Chem., 2016, 57(8), 1627.

  79. 79

    S. Plimpton. J. Comput. Phys., 1995, 117, 1.

  80. 80

    A. V. Teplukhin. J. Struct. Chem., 2013, 54(1), 65.

  81. 81

    A. V. Teplukhin. J. Struct. Chem., 2013, 54(Suppl. 2), S221.

  82. 82

    W. L. Jorgensen and C. J. Swenson. J. Am. Chem. Soc., 1985, 107, 569.

  83. 83

    C. L. Yaws. Thermophysical Properties of Chemicals and Hydrocarbons. Elsevier: Amsterdam, 2014.

  84. 84

    S. E. Wood and J. A. Gray III. J. Am. Chem. Soc., 1952, 74, 3729.

  85. 85

    E. Aicart, G. Tardajos, and M. Diaz Peña. J. Chem. Eng. Data, 1981, 26, 283.

  86. 86

    J. A. Draeger. J. Chem. Thermodyn., 1985, 17, 263.

  87. 87

    O. V. Dorofeeva, L. V. Gurvich, and V. S. Jorish. J. Phys. Chem. Ref. Data, 1986, 15, 437.

  88. 88

    E. S. Domalski and E. D. Hearing. J. Phys. Chem. Ref. Data, 1988, 17, 1637.

  89. 89

    R. Malhotra and L. A. Woolf. Int. J. Thermophys., 1990, 11, 1059.

  90. 90

    P. R. Sekar, R. Venkateswarlu and K. S. Reddy. Can. J. Chem., 1990, 68, 363.

  91. 91

    E. Aicart, E. Junquera and T. M. Letcher. J. Chem. Eng. Data, 1995, 40, 1225.

  92. 92

    A. Habenschuss and A. H. Narten. J. Chem. Phys., 1990, 92, 5692.

  93. 93

    A. H. Narten. J. Chem. Phys., 1977, 67, 2102.

  94. 94

    M. I. Cabaço, Y. Danten, M. Besnard, Y. Guissani, and B. Guillot. J. Phys. Chem. B, 1997, 101, 6977.

  95. 95

    T. F. Headen, C. A. Howard, N. T. Skipper, M. A. Wilkinson, D. T. Bowron, and A. K. Soper. J. Am. Chem. Soc., 2010, 132, 5735.

  96. 96

    M. Falkowska, D. T. Bowron, H. G. Manyar, C. Hardacre, and T. G. A. Youngs. ChemPhysChem, 2016, 17, 2043.

  97. 97

    T. F. Headen. Mol. Phys., 2019, 117, 3329.

  98. 98

    W. L. Jorgensen and D. L. Severance. J. Am. Chem. Soc., 1990, 112, 4768.

  99. 99

    C.-F. Fu and S. X. Tian. J. Chem. Theory Comput., 2011, 7, 2240.

  100. 100

    E. Arunan and H. S. Gutowsky. J. Chem. Phys., 1993, 98, 4294.

  101. 101

    M. Fioroni and D. Vogt. J. Phys. Chem. B, 2004, 108, 11774.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Teplukhin.

Ethics declarations

The author declares that he has no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teplukhin, A.V. MONTE CARLO CALCULATION OF THERMODYNAMIC AND STRUCTURAL CHARACTERISTICS OF LIQUID HYDROCARBONS. J Struct Chem 62, 70–82 (2021). https://doi.org/10.1134/S002247662101008X

Download citation

Keywords

  • polymers
  • simulation
  • Monte Carlo
  • NpT
  • parallel computing.