Skip to main content
Log in

THE RELATIVE STABILITY OF PROTONATED BASE PAIRS BETWEEN XANTHINE AND DNA BASES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Base pairs involving protonated nucleobases play important roles in the DNA republication. Xanthine is an oxidative product of guanine. In this work, we employ density functional theory to investigate the protonation properties of xanthine (X), adenine (A), cytosine (C), guanine (G), and thymine (T). With regard to the proton affinity, we study the protonated base pairs between X and A, C, G, T. The quantum theory of atoms in molecule and the natural bond orbital analysis are employed to elucidate the interaction characteristics. The interaction energy and structural parameters show the relative stability of the protonated base pairs: X:AH+ > X:CH+ > X:GH+ > XH+:T. The occurrence of X(syn):AH+(anti) structure may lead to a G:C → T:A transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. J. C. Gong and S. J. Sturla. J. Am. Chem. Soc., 2007, 129, 4882.

    Article  CAS  PubMed  Google Scholar 

  2. V. Thiviyanathan, A. Somasunderam, D. E. Volk, T. K. Hazra, S. Mitra, and D. G. Gorenstein. Biochem. Biophys. Res. Commun., 2008, 366(3), 752.

    Article  CAS  PubMed  Google Scholar 

  3. D. Bhattacharyya, S. C. Koripella, A. Mitra, V. B. Rajendran, and B. Sinha. J. Biosci., 2007, 32, 809.

    Article  CAS  PubMed  Google Scholar 

  4. Z. Qiu, Y. Xia, H. Wang, and K. Diao. J. Struct. Chem., 2011, 52(3), 462.

    Article  CAS  Google Scholar 

  5. K. Gehring, J. L. Leroy, and M. Guéron. Nature, 1993, 363, 561.

    Article  CAS  PubMed  Google Scholar 

  6. X. H. Zhang, M. Li, Y. T. Wang, and Z. C. Ouyang. Chin. Phys. B, 2014, 23(2), 020702.

    Article  CAS  Google Scholar 

  7. J. J. Dannenberg and M. Tomasz. J. Am. Chem. Soc., 2000, 122(9), 2062.

    Article  CAS  Google Scholar 

  8. M. Noguera, M. Sodupe, and J. Bertrán. Theor. Chem. Acc., 2007, 118, 113.

    Article  CAS  Google Scholar 

  9. J. Bertran, M. Noguera, and M. Sodupe. Afinidad, 2002, 59, 470.

  10. H. Y. Wang, J. D. Zhang, and H. F. Schaefer. Chem. Phys. Chem., 2010, 11, 622.

    Article  CAS  Google Scholar 

  11. B. Yang and M. T. Rodgers. J. Am. Soc. Mass. Spectrom., 2015, 26, 1394.

    Article  CAS  PubMed  Google Scholar 

  12. R. Eritja, D. M. Horowitz, P. A. Walker, J. P. Ziehler-Martin, M. S. Boosalis, M. F. Goodman, K. Itakura, and B. E. Kaplan. Nucleic Acids Res., 1986, 14, 8135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V. Vongchampa, M. Dong, L. Gingipalli, and P. Dedon. Nucleic Acids Res., 2003, 31, 1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09. Gaussian: Wallingford CT, 2009.

  15. P. Hobza and R. Zahradnik. Intermolecular Complexes. Elsevier: Amsterdam, 1988.

  16. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe. Chem. Rev., 1994, 94, 1873.

    Article  CAS  Google Scholar 

  17. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. DFT-D3 – A Dispersion Correction for DFT-Functions. http://toc.uni-muenster.de/DFTD3.

  18. I. Alkorta, I. Rozas, and J. Elguero. Struct. Chem., 1998, 9, 243.

    Article  CAS  Google Scholar 

  19. R. F. W. Bader. Chem. Rev., 1991, 91, 893.

    Article  CAS  Google Scholar 

  20. F. Greco, A. Liguori, G. Sindona, and N. Ucella. J. Am. Chem. Soc., 1990, 112, 9092.

    Article  CAS  Google Scholar 

  21. D. Armentano, G. De Munno, L. Di Donna, G. Sindona, and G. Giorgi. J. Am. Soc. Mass. Spectrom., 2004, 15, 268.

    Article  CAS  PubMed  Google Scholar 

  22. J. M. Rosenberg, N. C. Seeman, R. O. Day, and A. Rich. J. Mol. Bio., 1976, 104(1), 145.

Download references

Funding

This work was supported by the grant from the National Natural Science Foundation of China (21520102007), the Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation Open Found (JXMS202023), and the Doctor Foundation of the East China University of Technology (DHBK2019269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. -M. Qiu.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Z.M., Zhang, X.P. THE RELATIVE STABILITY OF PROTONATED BASE PAIRS BETWEEN XANTHINE AND DNA BASES. J Struct Chem 62, 29–36 (2021). https://doi.org/10.1134/S0022476621010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621010042

Keywords

Navigation