QUANTUM CHEMICAL STUDY OF THE STABILITY OF COPPER-PALLADIUM COMPLEXES IN THE GAS PHASE

Abstract

Heterometallic coordination compounds based on copper(II) and palladium(II) β-diketonates \(\text{ }\!\![\!\!\text{ Cu}{{\text{L}}_{\text{2}}}\cdot \,\text{Pd}{{\text{L}}_{\text{2}}}]\) (L = 2-methoxy-2,6,6-trimethylheptane-3,5-dionato) and \(\text{ }\!\![\!\!\text{ Cu}{{(\text{hfa})}_{\text{2}}}\,\cdot \text{Pd}{{\text{L'}}_{\text{2}}}]\) (hfa = hexafluoroacetylacetonate, L′ = 1,1,1-trifluoro-5-methoxy-5-methylhexane-2,4-dionato) with a polymeric chain-like crystal structure can be used to prepare Cu–Pd films by MOCVD. It was previously suggested that the Pd:Cu ratio in the films is related to the stability of binuclear complexes \(\text{Cu}{{\text{L}}_{\text{2}}}\cdot \,\text{Pd}{{\text{L}}_{\text{2}}}\)and \(\text{Cu}{{(\text{hfa})}_{\text{2}}}\,\cdot \,\text{Pd}{{\text{L'}}_{\text{2}}}\) (the forms these compound adopt in the gas phase). In the present work, the most probable structure of such binuclear complexes at 0 K is determined, their stability is studied, and interatomic interactions are analyzed by density functional theory calculations. The monometallic fragments of the complexes are connected by a network of weak non-covalent interactions, the Cu⋯O contact being the strongest one. When modeling such systems, empirical corrections are shown to be essential for the account of dispersion interactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. 1

    K. Zhang and J. D. Way. Sep. Purif. Technol., 2017, 186, 39.

  2. 2

    M. Luo, Y. Sun, Y. Qin, Y. Li, C. Li, Y. Yang, N. Xu, L. Wang, and S. Guo. Mater. Today Nano, 2018, 1, 29.

  3. 3

    V. V. Krisyuk, I. A. Baidina, A. E. Turgambaeva, V. A. Nadolinny, S. G. Kozlova, I. V. Korolkov, T. Duguet, C. Vahlas, and I. K. Igumenov. ChemPlusChem, 2015, 80, 1457.

  4. 4

    V. V. Krisyuk, S. Urkasym kyzy, I. A. Baidina, G. V. Romanenko, I. V. Korolkov, T. P. Koretskaya, N. I. Petrova, and A. E. Turgambaeva. J. Struct. Chem., 2017, 58(8), 1522.

  5. 5

    V. V. Krisyuk, A. E. Turgambaeva, I. V. Mirzaeva, S. Urkasym kyzy, T. P. Koretskaya, S. V. Trubin, S. V. Sysoev, Y. V. Shubin, E. A. Maksimovskiy, and N. I. Petrova. Vacuum, 2019, 166, 248.

  6. 6

    S. Urkasym kyzy, V. V. Krisyuk, A. E. Turgambaeva, I. A. Baidina, V. Yu. Komarov, E. V. Korotaev, and I. V. Korolkov. J. Struct. Chem., 2019, 60(10), 1635.

  7. 7

    V. V. Krisyuk, S. V. Sysoev, A. E. Turgambaeva, A. A. Nazarova, T. P. Koretskaya, I. K. Igumenov, and N. B. Morozova. J. Therm. Anal. Calorim., 2017, 130, 1105.

  8. 8

    E. J. Baerends, J. Autschbach, A. Bérces, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, L. Fan, T. H. Fischer, C. Fonseca Guerra, S. J. A. van Gisbergen, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, F. E. Harris, P. van den Hoek, H. Jacobsen, G. van Kessel, F. Kootstra, E. van Lenthe, D. A. McCormack, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, O. Visser, E. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, and T. Ziegler. ADF, SCM, Theoretical Chemistry. Vrije Universiteit: Amsterdam, The Netherlands, 2017, http://www.scm.com.

  9. 9

    E. Van Lenthe and E. J. Baerends. J. Comput. Chem., 2003, 24, 1142.

  10. 10

    E. van Lenthe, A. Ehlers, and E.-J. Baerends. J. Chem. Phys., 1999, 110, 8943.

  11. 11

    J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 1996, 77, 3865.

  12. 12

    S. Grimme. J. Comput. Chem., 2006, 27, 1787.

  13. 13

    S. Grimme, S. Ehrlich, and L. Goerigk. J. Comput. Chem., 2011, 32, 1456.

  14. 14

    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. J. Phys. Chem., 1994, 98, 11623.

  15. 15

    R. F. W. Bader. Atoms in Molecules. John Wiley & Sons, 1990.

  16. 16

    E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170.

  17. 17

    E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold. NBO 6.0. Theoretical Chemistry Institute, University of Wisconsin: Madison, 2013.

  18. 18

    A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899.

  19. 19

    O. O. Brovarets′, Y. P. Yurenko, and D. M. Hovorun. J. Biomol. Struct. Dyn., 2015, 33, 1624.

  20. 20

    N. S. Venkataramanan, A. Suvitha, and Y. Kawazoe. J. Mol. Graph. Model., 2017, 78, 48.

  21. 21

    S. A. Adonin, A. S. Novikov, Yu. K. Smirnova, Z. R. Tushakova, and V. P. Fedin. J. Struct. Chem., 2020, 61(5), 712.

  22. 22

    G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. a. van Gisbergen, J. G. Snijders, and T. Ziegler. J. Comput. Chem., 2001, 22, 931.

  23. 23

    F. Weinhold, C. R. Landis, and E. D. Glendening. Int. Rev. Phys. Chem., 2016, 35, 399.

  24. 24

    V. V. Krisyuk, I. A. Baidina, N. A. Kryuchkova, V. A. Logvinenko, P. E. Plyusnin, I. V. Korolkov, G. I. Zharkova, A. E. Turgambaeva, and I. K. Igumenov. Dalton Trans., 2017, 46, 12245.

  25. 25

    G. Serdaroğlu and N. Uludağ. J. Struct. Chem., 2019, 60(8), 1267.

  26. 26

    I. V. Mirzaeva and S. G. Kozlova. J. Struct. Chem., 2019, 60(11), 1750.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Mirzaeva.

Ethics declarations

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirzaeva, I.V., Kozlova, S.G. & Krisyuk, V.V. QUANTUM CHEMICAL STUDY OF THE STABILITY OF COPPER-PALLADIUM COMPLEXES IN THE GAS PHASE. J Struct Chem 62, 9–18 (2021). https://doi.org/10.1134/S0022476621010029

Download citation

Keywords

  • transition metal β-diketonates
  • density functional theory
  • non-covalent interactions
  • AIM theory
  • NBO.