Skip to main content
Log in

Geometry, Tautomerism, and Noncovalent Interaction of Bentiromide with a Carbon-Nanotube and γ-Fe2O3 Nanoparticles: A Quantum Mechanical Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A doctor can find out how pancreas is working using bentiromide. This drug can exist as six possible tautomers. Herein, by density functional theory (DFT) and handling the solvent effects with the polarizable continuum model (PCM), the mechanism of its tautomerization, energies, and structural parameters of the tautomers are investigated. Also, the natural bond orbital analysis (NBO) is used for exploring the frontier molecular orbitals. The most stable tautomer of bentiromide has three carbonyl groups in its structure. The amount of other tautomers is negligible in the aqueous solution. The non-covalent interactions of the most stable tautomer of bentiromide with an armchair (5,5) single-wall carbon nanotube and a γ-Fe2O3 nanoparticle are explored. In each case, three possible forms are optimized. Their most stable form is determined. The intermolecular H bonds have a critical role in the energy behavior of the interaction between bentiromide and the γ-Fe2O3 nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Imondi, R. Stradley, and R. Wolgemuth. Gut, 1972, 13, 726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Gyr, R. Wolf, A. Imondi, and O. Felsenfeld. Gastroenterology, 1975, 68, 488.

    CAS  PubMed  Google Scholar 

  3. C. Arvanitakis and N. Greenberger. The Lancet, 1976, 307, 663.

    Article  Google Scholar 

  4. H. Harada, K. Mishima, T. Shundo, N. Yamamoto, T. Sasaki, T. Hinofuji, T. Hayashi, Y. Uchida, and I. Kimura. Am. J. Gastroenterology, 1979, 71.

  5. C. Yamato and K. Kinoshita. J. Pharmacol. Exp. Ther., 1978, 206, 468.

    CAS  PubMed  Google Scholar 

  6. C. Lang, K. Gyr, G. Stalder, and D. Gillessen. British J. Surgery, 1981, 68, 771.

    Article  CAS  Google Scholar 

  7. R. Chowdhury and C. Forsmark. Aliment. Pharm. Therap., 2003, 17, 733.

    Article  CAS  Google Scholar 

  8. F. Heshmatipour, S.A. Beyramabadi, A. Morsali, and M. M. Heravi. J. Struct. Chem., 2016, 57, 1096.

    Article  CAS  Google Scholar 

  9. A. Khaleghi-Rad, S. A. Beyramabadi, A. Morsali, M. Ebrahimi, and M. Khorzandi-Chenarboo. J. Struct. Chem., 2017, 58, 244.

    Article  CAS  Google Scholar 

  10. H. L. H. Mendoza, G. Salgado-Morán, W. Cardona-Villada, A. G. Pacheco, and D. Glossman-Mitnik. J. Serb. Chem. Soc., 2016, 77.

  11. B. Eren and Y. Y. Gurkan. J. Serb. Chem. Soc., 2017, 82, 277.

    CAS  Google Scholar 

  12. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Gaussian Inc. Pittsburgh, PA, 2003.

    Google Scholar 

  13. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  14. R. Cammi and J. Tomasi. J. Comput. Chem., 1995, 16, 1449.

    Article  CAS  Google Scholar 

  15. G. Zhurko and D. Zhurko. URL: http://www.chemcraftprog.com, 2009.

  16. N. Tezer and N. Karakus. J. Mol. Model., 2009, 15, 223.

    Article  CAS  PubMed  Google Scholar 

  17. N. Özdemir, M. Dinçer, A. Çukurovalı, and O. Büyükgüngör. J. Mol. Model., 2009, 15, 1435.

    Article  CAS  PubMed  Google Scholar 

  18. W. Ma and Y. Fang. J. Nanoparticle Res., 2006, 8, 761. 1018

    Article  CAS  Google Scholar 

  19. S. Farhadi, F. Mahmoudi, and J. Simpson. J. Mol. Struct., 2016, 1108, 583.

    Article  CAS  Google Scholar 

  20. M. Anuratha, A. Jawahar, M. Umadevi, V. Sathe, P. Vanelle, T. Terme, O. Khoumeri, V. Meenakumari, and A. M. F. Benial. Spectrochim. Acta A, 2015, 149, 558.

    Article  CAS  Google Scholar 

  21. Y. Wang, S. Liu, Z. Liu, J. Yang, and X. Hu. Spectrochim. Acta A, 2013, 105, 612.

    Article  CAS  Google Scholar 

  22. F. Gobal, R. Arab, and M. Nahali. J. Mol. Struct.: THEOCHEM, 2010, 959, 15.

    Article  CAS  Google Scholar 

  23. A. Magham, A. Morsali, Z. Es′haghi, S. Beyramabadi, and H. Chegini. Prog. React. Kinet. Mec., 2015, 40, 119.

    Article  CAS  Google Scholar 

  24. E. Mohammad-Hasani, S. A. Beyramabadi, and M. Pordel. Indian J. Chem. A, 2017, 56, 626.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Ali Morsali (Associate Professor in Islamic Azad University, Mashhad Branch) for his kind cooperation in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ali Beyramabadi.

Additional information

Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 6, pp. 1049–1058.

Conflict of Interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanhaei, R., Beyramabadi, S.A. & Behmadi, H. Geometry, Tautomerism, and Noncovalent Interaction of Bentiromide with a Carbon-Nanotube and γ-Fe2O3 Nanoparticles: A Quantum Mechanical Study. J Struct Chem 60, 1008–1018 (2019). https://doi.org/10.1134/S0022476619060155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619060155

Keywords

Navigation