Skip to main content
Log in

Experimental and Theoretical Studies on Molecular Structures, Nanostructural Features, and Photophysical Properties of 5-Amino-1-Alkylimidazole-4-Carboxamide Compounds

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A detailed interpretation of experimental spectral data on 1H and 13C NMR chemical shifts of compounds determined from the DFT calculation is reported. The DFT calculated values are in good agreement with the experimental results. The NBO analysis is used to investigate the stability of 1-alkylAICA. The HOMO and LUMO analysis is performed to study the charge transfer property within the molecule as well as various molecular properties viz EHOMO, ELUMO, energy gap, ionization potential, electron affinity, electronegativity, chemical potential, electrophilicity, global hardness as well global softness, and so on. The formation of a 1D nano structure of 1-alkylAICA compounds is detected by SEM studies. The UV and fluorescence study is performed to observe the variation of their photophysical properties on going from the monomer to the nanostructure. TDDFT is applied to analyze experimentally measured absorption and emission spectra. A fluorescence life-time measurement is performed for the series of 1-AlkylAICA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kleeman, J. Engel, B. Kutscher, and D. Reichert. Pharmaceutical Subtances: Synthesis, Patents, Applications of the Most Relevent APIs 3 rd ed. Thieme Medical. New York, USA, 1999.

    Google Scholar 

  2. (a) A. M. Vijesh, A. M. Isloor, S. Telkar, S. K. Peethambar, S. Rai, and N. Isloor. Eur. J. Med. Chem., 2011, 46, 3531–3536; (b) A. K. Jain, V. Ravichandran, M. Sisodiya, and R. K. Agrawal. Asian Pac. J. Trop. Med., 2010, 3, 471–474; (c) R. Ramachandran, M. Rani, S. Senthan, Y.T. Jeong, and S. Kabilan. Eur. J. Med. Chem., 2011, 46, 1926–1934; (d) V. Padmavathi, C. P. Kumari, B. C. Venkatesh, and A. Padmaja. Eur. J. Med. Chem., 2011, 46, 5317–5326; (e) Y. Özkay, I. Isikdağ, Z. Incesu, and G. Akalin. Eur. J. Med. Chem., 2010, 45, 3320–3328; (f) X.-Q. Wang, L.-X. Liu, Y. Li, C.-J. Sun, W. Chen, L. Li, H.-B. Zhang, and X.-D. Yang. Eur. J. Med. Chem., 2013, 62, 111–121; (g) S. G. Alegaon, K. R. Alagawadi, P. V. Sonkusare, S. M. Chaudhary, D. H. Dadwe, and A. S. Shah. Bioorg. Med. Chem. Lett., 2012, 22, 1917–1921; (h) W. C. Yang, J. Li, J. Li, Q. Chen, and G. F. Yang. Bioorg. Med. Chem. Lett., 2012, 22, 1455–1458; (i) M. Gaba, D. Singh, S. Singh, V. Sharma, and P. Gaba. Eur. J. Med. Chem., 2010, 45, 2245–2249.

    Article  CAS  PubMed  Google Scholar 

  3. S. C. Hartman and J. M. Buchanan. Annu. Rev. Biochem., 1959, 28, 365–410.

    Article  CAS  PubMed  Google Scholar 

  4. S. Ray and A. Das. J. Mol. Str., 2015, 1089, 146–152.

    Article  CAS  Google Scholar 

  5. X. Wan, H. Zhang, Y. Li, and Y. Chen. New J. Chem., 2010, 34, 661–666.

    Article  CAS  Google Scholar 

  6. S. Toksoz, H. Acar, and M. O. Guker. Soft Matter, 2010, 6, 5839–5849.

    Article  CAS  Google Scholar 

  7. Y. S. Zhao, H. Fu, A. Peng, Y. Ma, and D. B. Xiao, J. Yao. Adv. Mat., 2008, 20, 2859–2876.

    Article  CAS  Google Scholar 

  8. (a) J.P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shimomura, K. Ito, T. Hashizume, N. Ishii, and T. Aida. Science, 2004, 304, 1481–1483; (b) H. Liu, Y. Li, S. Xiao, H. Gan, T. Jiu, H. Li, L. Jiang, D. Zhu, D. Yu, B. Xiang, and Y. Chen. J. Am. Chem. Soc., 2003, 125, 10794–10795; (c) H. Liu, Y. Li, L. Jiang, H. Luo, S. Xiao, H. Fang, H. Li, D. Zhu, D. Yu, J. Xu, and B. Xiang. J. Am. Chem. Soc., 2002, 124, 13370–13371.

    Article  CAS  PubMed  Google Scholar 

  9. (a) T. E. Kaiser, H. Wang, V. Stepanenko, and F. Würthner. Angew. Chem. Int. Ed., 2007, 46, 5541–5544; (b) T. Naddo, Y. K. Che, W. Zhang, K. Balakrishnan, X. M. Yang, M. Yen, J. C. Zhao, J. S. Moore, and L. Zang. J. Am. Chem. Soc., 2007, 129, 6978–6979; (c) A. Ajayaghosh, S. J. George, and A. P. H. J. Schenning. Top. Curr. Chem., 2005, 258, 83–118.

    Article  CAS  Google Scholar 

  10. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos. Science, 2002, 295, 2425–2427.

    Article  CAS  PubMed  Google Scholar 

  11. A. Xie, F. Wu, W. Jiang, K. Zhang, M. Sun, and M. Wang. J. Mater. Chem. C, 2017, 5, 2175–2181.

    Article  CAS  Google Scholar 

  12. Z. W. Pan, Z. R. Dai, and Z. L. Wang. Science, 2001, 291, 1947–1949.

    Article  CAS  Google Scholar 

  13. K. Balakrishnan, A. Datar, R. Oitker, H. Chen, J. M. Zuo, and L. Zang. J. Am. Chem. Soc., 2005, 127, 10496–10497.

    Article  CAS  PubMed  Google Scholar 

  14. K. Balakrishnan, A. Datar, T. Naddo, J. L. Huang, R. Oitker, M. Yen, J. C. Zhao, and L. Zang. J. Am. Chem. Soc., 2006, 128, 7390–7398.

    Article  CAS  PubMed  Google Scholar 

  15. A. D. Becke. J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  16. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1998, 37, 785–789.

    Article  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, Revision A.02-SMP. Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  18. E. Scrocco and J. Tomasi. Adv. Quantum Chem., 1978, 11, 115–193.

    Article  CAS  Google Scholar 

  19. F. J. Luque, J. M. Lopez, and M. Orozco. Theor. Chem. Acc., 2000, 103, 343–345.

    Article  CAS  Google Scholar 

  20. R. S. Mulliken. J. Chem. Phys., 1955, 23, 1833–1840.

    Article  CAS  Google Scholar 

  21. M. Szafran, A. Komasa, and E. B. Adamska. J. Mol. Struct., 2007, 827, 101–107.

    Article  CAS  Google Scholar 

  22. J. H. Rodriguez, D. E. Wheeler, and J. K. McCusker. J. Am. Chem. Soc., 1998, 120, 12051–12068.

    Article  CAS  Google Scholar 

  23. C. James, A. Amal Raj, R. Reghunathan, and I. H. Joe. J. Raman Spectrosc., 2006, 37, 1381–1392.

    Article  CAS  Google Scholar 

  24. J.-N. Liu, Z.-R. Chen, and S.-F. Yuan, J. Zhejiang, Univ. Sci., 2005, 6B, 584–589.

    CAS  Google Scholar 

  25. A. Toutchkine, V. Kraynov, and K. Hahn. J. Am. Chem. Soc., 2003, 125, 4132–4145.

    Article  CAS  PubMed  Google Scholar 

  26. (a) M. Mille, J.-F. Lamere, F. Rodrigues, S. Fery-Forgues. Langmuir, 2008, 24, 2671–2679; (b) A. Ajayaghosh, V. K. Praveen, and C. Vijayakumar. Chem. Soc. Rev., 2008, 37, 109–122; (c) L. Zang, Y. Che, J. S. Moore. Acc. Chem. Res., 2008, 41, 1596–1608; (d) J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu, Y. Zhou, H. Zhang, J. Han, F. Li, and C. Huang. Angew. Chem., Int. Ed., 2008, 47, 1063–1067; (e) Z. Yang and B. Xu. J. Mater. Chem., 2007, 17, 2385–2393; (f) Y. S. Zhao, W. Yang, D. Xiao, X. Sheng, X. Yang, Z. Shuai, Y. Luo, and J. Yao. Chem. Mater., 2005, 17, 6430–6435; (g) T. Akutagawa, K. Kakiuchi, T. Hasegawa, S. Noro, T. Nakamura, H. Hasegawa, S. Mashiko, and J. Becher. Angew. Chem., Int. Ed., 2005, 44, 7283–7287.

    Article  CAS  PubMed  Google Scholar 

  27. A. Ganguly, S. Jana, S. Ghosh, S. Dalapati, and N. Guchhait. Spectrochim. Acta A, 2013, 112, 237–244.

    Article  CAS  Google Scholar 

  28. D. K. Maiti, S. Halder, P. Pandit, N. Chatterjee, D. D. Joarder, N. Pramanik, Y. Saima, A. Patra, and P. K. Maiti. J. Org. Chem., 2009, 74, 8086–8097.

    Article  CAS  PubMed  Google Scholar 

  29. F. Würthner, T. E. Kaiser, and C. R. Saha-Möller. Angew. Chem. Int. Ed., 2011, 50, 3376–3410.

    Article  CAS  Google Scholar 

  30. M. Rocha, A. D. Santo, J. M. Arias, D. M. Gil, and A. B. Altabef. Spectrochim. Acta A, 2015, 136, 635–643.

    Article  CAS  Google Scholar 

  31. T. Koopmans. Physica, 1934, 1, 104–113.

    Article  Google Scholar 

  32. S. Liu. J. Chem. Sci., 2005, 117, 477–483.

    Article  CAS  Google Scholar 

  33. I. Lukovits, I. Bakó, A. Shaban, and E. Kálmán. Electrochim. Acta., 1998, 43, 131–136.

    Article  CAS  Google Scholar 

  34. R. G. Parr, L. V. Szentpály, and S. Liu. J. Am. Chem. Soc., 1999, 121, 1922–1924.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the University of Calcutta for providing the laboratory and spectroscopic facilities. The author thanks Prof. (retd.) Sibdas Ray, Dr. Kaliprasanna Dhara, and Aniruddha Ganguly of the Department of Chemistry, University of Calcutta for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Das.

Additional information

Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 6, pp. 1031–1048.

Funding

The author thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India for the award of a Senior Research Fellowship under grant No. 09/028(0795)/2010-EMR-I. Single crystal X-ray diffraction studies were performed using single crystal diffractometer facilities offered by DST-FIST program at the Chemistry Department, University of Calcutta.

Conflict of Interests

The author declares that he has no conflict of interests.

Supplementary information

10947_2019_1216_MOESM0_ESM.pdf

Supplementary Materials to: Experimental and Theoretical Studies on Molecular Structures, Nanostructural Features, and Photophysical Properties of 5-Amino-1-Alkylimidazole-4-Carboxamide Compounds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A. Experimental and Theoretical Studies on Molecular Structures, Nanostructural Features, and Photophysical Properties of 5-Amino-1-Alkylimidazole-4-Carboxamide Compounds. J Struct Chem 60, 990–1007 (2019). https://doi.org/10.1134/S0022476619060143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619060143

Keywords

Navigation