Skip to main content
Log in

[NiEn3]MoO4: Features of the Phase Transition and Thermal Decomposition in the Presence of Lithium Hydride

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structural characteristics of the [NiEn3]MoO4 complex salt (En is ethylenediamine) at 90 K are as follows: space group \(P\overline 3 ,\;a = 15.9307\left( 9 \right)\;\acute{\mathring{\mathrm{A}}} ,\;c = 9.9238\left( 6 \right)\;\acute{\mathring{\mathrm{A}}} ,\;V = 2181.1\left( 3 \right)\;{\acute{\mathring{\mathrm{A}}} ^3},\;Z = 6,\;{d_{\rm{x}}} = 1.822\;{\rm{g/c}}{{\rm{m}}^{\rm{3}}}\), Ni-N is \(2.1182\left( {12} \right) - 2.1498\left( {11} \right)\;\acute{\mathring{\mathrm{A}}} ,\) ∠Ni-N-N is 80.76(4)-82.27(4)°. According to the differential scanning calorimetry data in a range from 295 K to 310 K, there is a thermal anomaly with peaks at T1 = 299.6 K and T2 = 304.7 K. The crystal structural characteristics at 320 K are as follows: space group \(P\overline 3 \,1c,\;a = 9.2491\left( 4 \right)\;\acute{\mathring{\mathrm{A}}} ,\;c = 9.9713\left( 4 \right)\;\acute{\mathring{\mathrm{A}}} ,\;V = 738.72\left( 7 \right)\;{\acute{\mathring{\mathrm{A}}} ^3},\;Z = 2,\;{d_x} = 1.794\;{\rm{g/c}}{{\rm{m}}^3}\), Ni-N is \(2.1302\left( {14} \right)\;\acute{\mathring{\mathrm{A}}} \), ∠N-Ni-N is 80.96(8)°. With increasing temperature from 90 K to 320 K a decrease in the average Mo-O distance from \(1.769\;\acute{\mathring{\mathrm{A}}} \) to \(1.725\;\acute{\mathring{\mathrm{A}}} \) is observed in the structure. The comparative analysis of the interionic N-H…O and C-H…O contacts is carried out. The ex situ powder X-ray diffraction study of the formation process of metal and carbide phases by the [NiEn3]MoO4 thermal decomposition in the presence of LiH in the He atmosphere is performed. At the temperature of 1323 K a Mo2C and MoNi4 phase mixture forms in the first minute. With increasing keeping time the Ni2Mo4Cx phase forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.-Z. Lin, G.-H. Han, F. Geng, and C. Ding. Acta Cryst., 2006, E62, 532–534.

    Google Scholar 

  2. F. H. Allen. Acta Crystallogr., 2002, B58(3–1), 380–388.

    Article  CAS  Google Scholar 

  3. M. Lutz. Acta. Cryst. Sect. C: Cryst. Struct. Comm., 2010, 66, 330–335.

    Article  CAS  Google Scholar 

  4. G. B. Jameson, R. Shneider, E. Dubler, and H. R. Oswald. Acta Cryst., 1982, B38, 3016–3020.

    Article  CAS  Google Scholar 

  5. A. S. Sukhih, S. P. Khranenko, S. P. Pishchur, and S. A. Gromilov. J. Struct. Chem., 2018, 59(3), 657–663.

    Article  Google Scholar 

  6. S. P. Khranenko, V. Y. Komarov, E. Y Gerasimov, A. V. Zadesenets, E. A. Maksimovsky, and S. A. Gromilov. J. Struct. Chem., 2017, 58(7), 1448–1452.

    Article  CAS  Google Scholar 

  7. S. A. Gromilov, E. Y. Gerasimov, S. P. Khranenko, V. Y. Komarov, and A. V. Zadesenets. J. Struct. Chem., 2017, 58(7), 1443–1447.

    Article  CAS  Google Scholar 

  8. S. P. Khranenko, A. S. Sukhih, S. P. Pishchur, P. S. Buneeva, V. Y. Komarov, and S. A. Gromilov. J. Struct. Chem., 2018, 59(8), 1960–1965.

    Article  Google Scholar 

  9. W. Kraus and G. Nolze. J. Appl. Crystallogr., 1996, 29(3), 301–303.

    Article  CAS  Google Scholar 

  10. Ya. Gibner and I. Vasilyeva. J. Therm. Anal., 1998, 53, 151–160.

    Article  CAS  Google Scholar 

  11. S. A. Gromilov, R. E. Nikolaev, and S. V. Cherepanova. J. Struct. Chem., 2018, 59(2), 395–397.

    Article  Google Scholar 

  12. A. V. Panchenko, N. D Tolstykh, and S. A Gromilov. J. Struct. Chem., 2014, 55(7), 1209–1214.

    Article  CAS  Google Scholar 

  13. A. Yelisseyev, A. Khrenov, V. Afanasiev, V. Pustovarov, S. Gromilov, A. Panchenko, N. Pokhilenko, and K. Litasov. Diam. Rel. Mater., 2015, 58, 69–77.

    Article  CAS  Google Scholar 

  14. A. Rodriguez-Navarro. J. Appl. Cryst., 2006, 39(6), 905–909.

    Article  CAS  Google Scholar 

  15. C. Prescher and V. B. Prakapenka. High Pres. Res., 2015, 35(3).

  16. Powder Diffraction File. PDF-2. International Centre for Diffraction Data, USA.

  17. Inorganic Crystal Structure Database. D-1754. Eggenstein-Leopoldshafen, Germany.

  18. Bruker AXS Inc. APEX2 V2013.6-2, SAINT V8.32B and SADABS-2012/1. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.

  19. O. V. Dolomanov, L. J. Bourhis, R. J Gildea, J. A. K. Howard, and H. Puschmann. J. Appl. Cryst., 2009, 42, 339–341.

    Article  CAS  Google Scholar 

  20. G. M. Sheldrick. Acta Cryst., 2015, A71, 3–8.

    Google Scholar 

  21. G. M. Sheldrick. Acta Cryst., 2015, C71, 3–8.

    Google Scholar 

  22. A. L. Spek. Acta Cryst., 2009, D65, 148–155.

    Google Scholar 

  23. G. B. Jameson, R. Shneider, E. Dubler, and H. R. Oswald. Acta Cryst., 1982, B38, 3016–3020.

    Article  CAS  Google Scholar 

  24. F. L. Hirshfeld. Theor. Chim. Acta, 1977, 44(2), 129–138.

    Article  CAS  Google Scholar 

  25. M. A. Spackman and P. G. Byrom. Chem. Phys. Lett. 1997, 267(3–4), 215–220.

    Article  CAS  Google Scholar 

  26. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. University of Western Australia, 2017. http://hirshfeldsurface.net.

  27. D. Jayatilaka and D. J. Grimwood. Comput. Sci. — ICCS, 2003, 4, 142–151.

    Google Scholar 

  28. E. A. Bykova, S. P. Khranenko, and S. A. Gromilov. J. Struct. Chem., 2012, 53(1), 186–190.

    Google Scholar 

  29. J. S. O. Evans, T. A Mary, and A. W. Sleight. J. Solid State Chem., 1998, 137, 148–160.

    Article  CAS  Google Scholar 

  30. D. A. Woodcock, P. Lightfoot, and C. Ritter. J. Solid State Chem., 2000, 149, 92–98.

    Article  CAS  Google Scholar 

  31. M. Wu, X. Liu, D. Chen, Q. Huang, H. Wu, and Y. Liu. Inorg. Chem., 2014, 53, 9206–9212.

    Article  CAS  PubMed  Google Scholar 

  32. L. F. Kozin and N. V. Mashkova. Ukr. Himich. Zhurn, 2009, 75(11), 48–54.

    CAS  Google Scholar 

  33. L. F. Kozin and S. V. Volkov. Modern Energetics and Ecology: Problems and Prospects [in Russian]. Naukova Dumka: Kiev, 2006, 647.

    Google Scholar 

  34. H. Ago, N. Uehara, N. Yoshihara, M. Tsuji, M. Yumura, and N. Tomonaga. Carbon, 2006, 44, 2912–2918.

    Article  CAS  Google Scholar 

  35. Yu. I. Bauman, I. V. Mishakov, Yu. V. Rudneva, P. E. Plyusnin, Yu. V. Shubin, D. V. Korneev, and A. A. Vedyagin. Industr. & Eng. Chem. Res., 2018, in press. DOI: https://doi.org/10.1021/acs.iecr.8b02186.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gromilov.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 5, pp. 814-822.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhikh, A.S., Khranenko, S.P., Komarov, V.Y. et al. [NiEn3]MoO4: Features of the Phase Transition and Thermal Decomposition in the Presence of Lithium Hydride. J Struct Chem 60, 780–788 (2019). https://doi.org/10.1134/S002247661905010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247661905010X

Keywords

Navigation