Skip to main content
Log in

A Theoretical Investigation on the Regioselectivity of the Diels–Alder Cycloaddition of 9-(Methoxymethyl) Anthracene And Citraconic Anhydride

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism and regioselectivity of the Diels–Alder cycloaddition reaction between 9- (methoxymethyl)anthracene and citraconic anhydride are explored using the valuable density functional theory (DFT) methods. The solvent effects are considered using the polarizable continuum model in the toluene solution. Due to a small electrophilicity difference of the reactants, the reaction has a low polar character. The investigated Diels–Alder reaction has a normal electron demand character. Depending on the respective position of substituents in the cycloadducts (head-to-head (ortho) or head-to-tail (meta)) the reaction can be progressed via two different pathways: ortho and meta. Due to a very high activation energy, the meta pathway is rejected. The product of the ortho pathway is demonstrated to be the final product of the reaction in the toluene solution. The obtained DFT results are in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Boger. Chem. Rev. (Washington, DC, US), 1986, 86, 781.

    Article  CAS  Google Scholar 

  2. X. Jiang and R. Wang. Chem. Rev. (Washington, DC, US), 2013, 113, 5515.

    Article  CAS  Google Scholar 

  3. K.–I. Takao, R. Munakata, and K.–I. Tadano. Chem. Rev. (Washington, DC, US), 2005, 105, 4779.

    Article  CAS  Google Scholar 

  4. J. D. Winkler. Chem. Rev. (Washington, DC, US), 1996, 96, 167.

    Article  CAS  Google Scholar 

  5. L. Song, G. Zhu, Y. Liu, B. Liu, and S. Qin. J. Am. Chem. Soc., 2015, 137, 13706.

    Article  CAS  PubMed  Google Scholar 

  6. E. V. Mironova, M. S. Dzyurkevich, O. A. Lodochnikova, D. B. Krivolapov, I. A. Litvinov, and V. V. Plemenkov. J. Struct. Chem., 2012, 53(2), 361–364.

    Article  CAS  Google Scholar 

  7. M. Salakhov, O. Grechkina, and B. Bagmanov. J. Struct. Chem., 2010, 51(1), 16.

    Article  CAS  Google Scholar 

  8. T. Barhoumi–Slimi, M. B. Dhia, M. Nsangou, M. El Gaied, and M. Khaddar. J. Struct. Chem., 2010, 51(2), 251.

    Article  CAS  Google Scholar 

  9. D. L. Boger and S. M. Weinreb. Hetero Diels–Alder methodology in organic synthesis. Elsevier, 2012.

    Google Scholar 

  10. H. Oikawa and T. Tokiwano. Nat. Prod. Rep., 2004, 21, 321.

    Article  CAS  PubMed  Google Scholar 

  11. E. M. Stocking and R. M. Williams. Angew. Chem., Int. Ed., 2003, 42, 3078.

    Article  CAS  Google Scholar 

  12. P. Buonora, J.–C. Olsen, and T. Oh. Tetrahedron, 2001, 57, 6099.

    Article  CAS  Google Scholar 

  13. J. Barluenga, J. Joglar, F. González, and S. Fustero. Synlett, 1990, 1990, 129.

    Article  Google Scholar 

  14. K. L. Burgess, N. J. Lajkiewicz, A. Sanyal, W. Yan, and J. K. Snyder. Org. Lett., 2005, 7, 31.

    Article  CAS  PubMed  Google Scholar 

  15. E. Ciganek. J. Org. Chem., 1980, 45, 1497.

    Article  CAS  Google Scholar 

  16. S. Fukuzumi, T. Okamoto, and K. Ohkubo. J. Phys. Chem. A, 2003, 107, 5412.

    Article  CAS  Google Scholar 

  17. B. Gacal, H. Durmaz, M. A. Tasdelen, G. Hizal, U. Tunca, Y. Yagci, and A. L. Demirel. Macromolecules, 2006, 39, 5330.

    Article  CAS  Google Scholar 

  18. N. D. Khupse and A. Kumar. J. Phys. Chem. A, 2011, 115, 10211.

    Article  CAS  PubMed  Google Scholar 

  19. K. E. Kolb. J. Chem. Educ., 1989, 66, 955.

    Google Scholar 

  20. M. M. Kose, G. Yesilbag, and A. Sanyal. Org. Lett., 2008, 10, 2353.

    Article  CAS  PubMed  Google Scholar 

  21. K. E. Wise and R. A. Wheeler. J. Phys. Chem. A, 1999, 103, 8279.

    Article  CAS  Google Scholar 

  22. A. Nierth, A. Y. Kobitski, G. U. Nienhaus, and A. Jäschke. J. Am. Chem. Soc., 2010, 132, 2646.

    Article  CAS  PubMed  Google Scholar 

  23. G. H. Schenk and D. R. Wirz. Anal. Chem., 1970, 42, 1754.

    Article  CAS  Google Scholar 

  24. R. Khan, T. P. Singh, and M. D. Singh. Synlett, 2014, 25, 696.

    Article  CAS  Google Scholar 

  25. L. R. Domingo, M. T. Picher, J. Andrés, and V. S. Safont. J. Org. Chem., 1997, 62, 1775.

    Article  CAS  Google Scholar 

  26. S. Noorizadeh and H. Maihami. J. Mol. Struct.: THEOCHEM, 2006, 763, 133.

    Article  CAS  Google Scholar 

  27. B. R. Beno, K. Houk, and D. A. Singleton. J. Am. Chem. Soc., 1996, 118, 9984.

    Article  CAS  Google Scholar 

  28. L. R. Domingo, M. J. Aurell, P. Pérez, and R. Contreras. J. Phys. Chem. A, 2002, 106, 6871.

    Article  CAS  Google Scholar 

  29. N. Çelebi–Ölçüm, A. Sanyal, and V. Aviyente. J. Org. Chem., 2009, 74, 2328.

    Article  CAS  PubMed  Google Scholar 

  30. S. S. Borisevich, A. V. Kovalskaya, I. P. Tsypysheva, and S. L. Khursan. J. Theor. Comput. Chem., 2014, 13, 1450048.

    Article  CAS  Google Scholar 

  31. H. Chemouri and S. Mekelleche. J. Theor. Comput. Chem., 2006, 5, 197.

    Article  CAS  Google Scholar 

  32. M. A. Fernández–Herrera, C. Zavala–Oseguera, J. L. Cabellos, J. Sandoval–Ramírez, L. R. Domingo, and G. Merino. J. Mol. Model., 2014, 20, 2207.

    Article  CAS  PubMed  Google Scholar 

  33. B. Szefczyk, T. Andruniów, and W. A. Sokalski. J. Mol. Model., 2008, 14, 727.

    Article  CAS  PubMed  Google Scholar 

  34. T. M. Barhoumi–Slimi, K. Essalah, M.a.K. Sanhoury, M. Ourévitch, and M. M. El Gaied. Struct. Chem., 2014, 25, 799.

    Article  CAS  Google Scholar 

  35. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  36. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Rob, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hrat–chian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Ra–ghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian 03. Wallingford, CT: Gaussian, Inc., 2003.

    Google Scholar 

  37. C. Gonzalez and H. B. Schlegel. J. Phys. Chem., 1990, 94, 5523.

    Article  CAS  Google Scholar 

  38. U. C. Singh and P. A. Kollman. J. Comput. Chem., 1984, 5, 129.

    Article  CAS  Google Scholar 

  39. B. H. Besler, K. M. Merz, and P. A. Kollman. J. Comput. Chem., 1990, 11, 431.

    Article  CAS  Google Scholar 

  40. F. De Proft, J. M. Martin, and P. Geerlings. Chem. Phys. Lett., 1996, 256, 400.

    Article  CAS  Google Scholar 

  41. A. Bazian, S. A. Beyramabadi, A. Davoodnia, M. Pordel, and M. R. Bozorgmehr. Res. Chem. Intermed., 2016, 42, 6125.

    Article  CAS  Google Scholar 

  42. W. Benchouk and S. Mekelleche. J. Mol. Struct.: THEOCHEM, 2008, 862, 1.

    Article  CAS  Google Scholar 

  43. F. Moeinpour. Chin. J. Chem. Phys., 2010, 23, 165.

    Article  CAS  Google Scholar 

  44. M. J. Aurell, L. R. Domingo, P. Pérez, and R. Contreras. Tetrahedron, 2004, 60, 11503.

    Article  CAS  Google Scholar 

  45. P. Chattaraj. J. Phys. Chem. A, 2001, 105, 511.

    Article  CAS  Google Scholar 

  46. R. G. Parr and W. Yang. Annu. Rev. Phys. Chem., 1995, 46, 701.

    Article  CAS  PubMed  Google Scholar 

  47. R. G. Parr and R. G. Pearson. J. Am. Chem. Soc., 1983, 105, 7512.

    Article  CAS  Google Scholar 

  48. W. Yang and W. J. Mortier. J. Am. Chem. Soc., 1986, 108, 5708.

    Article  CAS  PubMed  Google Scholar 

  49. H. Chermette. J. Comput. Chem., 1999, 20, 129.

    Article  CAS  Google Scholar 

  50. P. Geerlings, F. De Proft, and W. Langenaeker. Chem. Rev. (Washington, DC, US), 2003, 103, 1793.

    Article  CAS  Google Scholar 

  51. R. G. Parr and W. Yang. J. Am. Chem. Soc., 1984, 106, 4049.

    Article  CAS  Google Scholar 

  52. P. W. Ayers and R. G. Parr. J. Am. Chem. Soc., 2000, 122, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Beyramabadi.

Additional information

Original Russian Text © 2018 A. Bazian, S. A. Beyramabadi, A. Davoodnia, M. R. Bozorgmehr, M. Pordel.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 8, pp. 1874–1880, November-December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazian, A., Beyramabadi, S.A., Davoodnia, A. et al. A Theoretical Investigation on the Regioselectivity of the Diels–Alder Cycloaddition of 9-(Methoxymethyl) Anthracene And Citraconic Anhydride. J Struct Chem 59, 1810–1817 (2018). https://doi.org/10.1134/S0022476618080085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618080085

Keywords

Navigation