Skip to main content
Log in

A Quantum Chemical Simulation of the Interaction Between Leucine and the Dimer of Sodium Dodecyl Sulphate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Complexes formed by leucine (Leu) and the dimer of sodium dodecyl sulfate (DDSNa)2 are studied by the quantum chemical method DFT using the hybrid exchange-correlation functional B97 with Grimme's dispersion correction D2 and the 6-311++G(2d,2p) basic set. The complexes formed by Leu and the dimer of DDSNa (considered as a micelle fragment) are studied in terms of their spatial structures and the energies of intermolecular interactions ЕIMI, depending on the penetration depth of Leu inside the micelle model. The highest energy ЕIMI is exhibited by the complex formed by the zwitterionic form of the amino acid and the hydrophilic part of sodium dodecyl sulfate. When the hydrophilic environment is replaced by the hydrophobic one, the intramolecular hydrogen bond in the amino acid changes in terms of its type and strength: N–H…O (weak) → N…H…O (strong) → N…O–H (weak). The energies of frontier orbitals and, therefore, redox properties of leucine also undergo changes in the course of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antimicrobial Peptides: Methods and Protocols / Ed. by A. Giuliani and A. C. Rinaldi. USA, New York: Humana Press, 2010.

    Google Scholar 

  2. M. R. Bozorgmehr, M. Saberi, and H. Chegini. J. Mol. Liq., 2014, 199, 184.

    Article  CAS  Google Scholar 

  3. I. Yu. Ponedel′kina, V. N. Odinokov, E. S. Vakhrusheva, M. T. Golikova, L. M. Khalilov, and U. M. Dzhemilev. Russ. J. Bioorg. Chem., 2005, 31, 82.

    Article  CAS  Google Scholar 

  4. Y. Ding, Y. Shu, L. Ge, and R. Guo. Colloids Surf., A, 2007, 298, 163–169.

    Article  CAS  Google Scholar 

  5. Z. Liu, X. Guo, Z. Feng, and L. Jia. J. Solution Chem., 2015, 44, 293.

    Article  CAS  Google Scholar 

  6. H. D. Thaker, F. Sgolastra, D. Clements, R. W. Scott, and G. N. Tew. J. Med. Chem., 2011, 54, 2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. M. Yermak and V. N. Davydova. Biochemistry (Moscow) supplement. Series A: Membrane and cell biology., 2008, 2(4), 279.

    Article  Google Scholar 

  8. V. V. Andrushchenko, H. J. Vogel, and E. J. Prenner. Biochim. Biophys. Acta, 2007, 1768, 2447.

    Article  CAS  PubMed  Google Scholar 

  9. S. R. Dennison, J. Wallace, F. Harris, and D. A. Phoenix. Protein Pept. Lett., 2005, 12, 31.

    Article  CAS  PubMed  Google Scholar 

  10. A. Ali, N. A. Malik, and S. Uzair. Mol. Phys., 2014, 112, 2681.

    Article  CAS  Google Scholar 

  11. M. S. Hossain, T. K. Biswas, and D. C. Kabiraz. J. Chem. Thermodyn., 2014, 71, 6.

    Article  CAS  Google Scholar 

  12. B. Z. Idiyatullin, Y. F. Zuev, K. S. Potarikina, O. G. Us′yarov, and O. S. Zueva. Colloid J., 2013, 75, 532.

    Article  CAS  Google Scholar 

  13. L. Zhu, Y. Han, M. Tian, and Y. Wang. Langmuir, 2013, 29, 12084.

    Article  CAS  PubMed  Google Scholar 

  14. S. V. Shilova, A. Y. Tret′yakova, and V. P. Barabanov. Russ. J. Phys. Chem. A, 2016, 90, 95.

    Article  CAS  Google Scholar 

  15. Z. Yan, Q. Zhang, W.–W. Li, and J. Wang. J. Chem. Eng. Data, 2010, 55, 3560.

    Article  CAS  Google Scholar 

  16. R. Saeed, M. Usman, A. Mansha, N. Rasool, S. A. R. Naqvi, A. F. Zahoor, H. M. A. Rahman, U. A. Rana, and E. Al–Zahrani. Colloids Surf. A, 2017, 512, 51.

    Article  CAS  Google Scholar 

  17. V. G. Badelin, I. N. Mezhevoi, and E. Yu. Tyunina. Russ. J. Phys. Chem. A., 2017, 91(3), 523.

    Google Scholar 

  18. V. G. Badelin, E. Yu. Tyunina, and G. N. Tarasova. Zh. Fiz. Khim., 2017, 91(5), 862.

    Google Scholar 

  19. V. I. Smirnov and V. G. Badelin. J. Phys. Chem. A., 2017, 91, 1681.

    CAS  Google Scholar 

  20. S. V. Efimov, F. Kh. Karataeva, A. V. Aganov, S. Berger, and V. V. Klochkov. J. Mol. Struct., 2013, 1036, 298.

    Article  CAS  Google Scholar 

  21. I. Z. Rakhmatullin, L. F. Galiullina, E. A. Klochkova, I. A. Latfullin, A. V. Aganov, and V. V. Klochkov. J. Mol. Struct., 2016, 1105, 25.

    Article  CAS  Google Scholar 

  22. V. G. Zavodinskiy, A. A. Gnidenko, V. N. Davidova, and I. M. Ermak. Butlerov Comm., 2003, 4(2), 11.

    Google Scholar 

  23. D. E. Nolde, P. E. Volynskii, A. S. Arseniev, and R. G. Efremov. Russ. J. Bioorg. Chem., 2000, 26, 115.

    Article  CAS  Google Scholar 

  24. A. S. Khamidullina, I. V. Vakulin, R. F. Talipov, and I. S. Shepelevich. J. Struct. Chem., 2005, 46(6), 985.

    Article  CAS  Google Scholar 

  25. Z. Qiu, Y. Xia, H. Wang, and K. Diao. J. Struct. Chem., 2011, 52(3), 462.

    Article  CAS  Google Scholar 

  26. N. I. Giricheva, M. S. Kurbatova, E. Yu. Tyunina, and V. G. Badelin. J. Struct. Chem., 2017, 58(8), 1604.

    Article  CAS  Google Scholar 

  27. B. Tah, P. Pal, S. Roy, D. Dutta, S. Mishra, M. Ghosh, and G. B. Talapatra. Spectrochim. Acta, Part A, 2014, 129, 345.

    Article  CAS  Google Scholar 

  28. J. P. Marcolongo and M. Mirenda. J. Chem. Educ., 2011, 88, 629.

    Article  CAS  Google Scholar 

  29. B. Ch. Deka and P. Kr. Bhattacharyya. Comput. Theor. Chem., 2017, 1110, 40.

    Article  CAS  Google Scholar 

  30. H.–D. Jakubke and H. Jeschkeit. Aminosäuren, Peptide, Proteine. Berlin, Akademie–Verlag, 1982.

    Google Scholar 

  31. S. Adhikari and T. Kar. J. Cryst. Growth., 2012, 356, 4.

    Article  CAS  Google Scholar 

  32. V. Yu. Kurochkin, V. V. Chernikov, and T. D. Orlova. Russ. J. Phys. Chem. A., 2011, 85, 598.

    Article  CAS  Google Scholar 

  33. A. K. Rai, X. Xu, Z. Lin, and D. K. Rai. Vib. Spectrosc., 2011, 56, 74.

    Article  CAS  Google Scholar 

  34. N. A. Akhmedov, L. I. Ismailova, R. M. Abbasli, N. F. Akhmedov, and N. M. Godjaev. Russ. J. Bioorg. Chem., 2005, 31, 27.

    Article  CAS  Google Scholar 

  35. S. G. Stepanian, A. Yu. Ivanov, and L. Adamowicz. Chem. Phys., 2013, 423, 20.

    Article  CAS  Google Scholar 

  36. A. D. Becke. J. Chem. Phys., 1997, 107, 8554.

    Article  CAS  Google Scholar 

  37. S. Grimme. J. Comp. Chem., 2006, 27, 1787.

    Article  CAS  Google Scholar 

  38. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople. J. Chem. Phys., 1980, 72, 650.

    Article  CAS  Google Scholar 

  39. M. J. Frisch, G. W. Truck, H. B. Schlegel, et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  40. F. Weinhold and C. R. Landis. Chem. Educ. Res. Pract. Eur., 2001, 2, 91.

    Article  CAS  Google Scholar 

  41. N. V. Usol’tseva, А. I. Smirnova, N. V. Zharnikova, M. S. Kurbatova, N. I. Giricheva, and V. G. Badelin. Liq. Cryst. Their Appl., 2016, 16(2), 70.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Giricheva.

Additional information

Original Russian Text © 2018 N. I. Giricheva, M. S. Kurbatova, E. Yu. Tyunina, V. P. Barannikov.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 8, pp. 1834–1841, November-December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giricheva, N.I., Kurbatova, M.S., Tyunina, E.Y. et al. A Quantum Chemical Simulation of the Interaction Between Leucine and the Dimer of Sodium Dodecyl Sulphate. J Struct Chem 59, 1768–1775 (2018). https://doi.org/10.1134/S0022476618080024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618080024

Keywords

Navigation