Skip to main content
Log in

Asymmetric Oxygen Bridged Copper(II) Carboxylate: Synthesis, Complete Characterization, and Crystal Structure

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Binuclear centrosymmetric copper(II) complex of the formula bipyCu(L)4Cubipy, where bipy = 2,2′- bipyridine and L = 4-methoxy-2-phenyl acetate, is synthesized and characterized by FT-IR, UV-Visible, ESR and mass spectroscopy, electrochemical, thermogravimetric, and single crystal XRD techniques. The complex contains two differently oriented molecules per unit cell stabilized via intermolecular interactions. Geometry around each Cu(II) was found to be square pyramidal affected by asymmetrically bridging oxygen atoms occupying the apical position of one square pyramid and the axial position of another in the same binuclear molecule. The square base is formed by two oxygen atoms from two carboxylate ligands and two nitrogen atoms from the bipyridine moiety. TGA shows that the complex is stable up to 170 °C followed by stepwise loss of coordinated ligands, which was supported by GC-MS data as well. A broad absorption spectrum indicated 2B1g as the ground state and single electron occupancy of the dx2y2 orbital, which was confirmed by the ESR spectrum. The electrochemical study gives two oxidation curves corresponding to Cu(II)/Cu(III) and Cu(I)/Cu(II) and a reduction signal corresponding to the Cu(II)/Cu(I) process. The robust complex represents an interesting contribution to the understanding of coordination chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. P. Sharma, A. Saini, J. Kumar, et al. Inorg. Chim. Acta, 2017, 457, 59–68.

    Article  CAS  Google Scholar 

  2. I. Matulkova, J. Cihelka, K. Fejfarova, et al. CrystEngComm, 2011, 13, 4131–4138.

    Article  CAS  Google Scholar 

  3. J. P. Collman, R. A. Decreau, Y. Yan, et al. J. Am. Chem. Soc., 2007, 129, 5794/5795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. J. Chem. Soc., Dalton Trans., 1984, 1349–1356.

    Google Scholar 

  5. B. K. Tripuramallu, S. Mukherjee, S. K. Das, et al. Cryst. Growth Des., 2012, 12, 79–97.

    Article  CAS  Google Scholar 

  6. N. Wannarit, C. Pakawatchai, I. Mutikainen, et al. Phys. Chem. Chem. Phys., 2013, 15, 1966–1975.

    Article  CAS  PubMed  Google Scholar 

  7. F. Xu, T. Tao, K. Zhang, et al. Dalton Trans., 2013, 42, 3631–3645.

    Article  CAS  PubMed  Google Scholar 

  8. M. R. P. Kurup, B. Varghese, M. Sithambaresan, et al. Polyhedron, 2011, 30, 70–78.

    Article  CAS  Google Scholar 

  9. O. Castillo, A. Luque, S. Iglisias, et al. Inorg. Chem. Commun., 2001, 4, 640–642.

    Article  CAS  Google Scholar 

  10. P. Phuengphai, S. Youngme, N. Chaichit, et al. Polyhedron, 2006, 25, 2198–2206.

    Article  CAS  Google Scholar 

  11. S. Majumder, M. Fleck, C. R. Lucas, et al. J. Mol. Struct., 2012, 1020, 127–133.

    Article  CAS  Google Scholar 

  12. G. S. Baghel, J. P. Chinta, A. Kaiba, et al. Cryst. Growth Des., 2012, 12, 91–96.

    Article  CAS  Google Scholar 

  13. C. H. Ng, K. C. Kong, S. T. Von, et al. Dalton Trans., 2008, 4, 447–454.

    Article  Google Scholar 

  14. V. Rajendiran, R. Karthik, M. Palaniandavar, et al. Inorg. Chem., 2007, 46, 8208–8221.

    Article  CAS  PubMed  Google Scholar 

  15. S. Leconte, R. Ruzziconi, et al. J. Fluorine Chem., 2002, 117, 167–172.

    Article  CAS  Google Scholar 

  16. A. Hangan, A. Bodoki, L. Oprean, et al. Polyhedron, 2010, 29, 1305–1313.

    Article  CAS  Google Scholar 

  17. M. Iqbal, S. Ali, Z.-U. Rehman, et al. J. Coord. Chem., 2014, 67, 1731–1745.

    Article  CAS  Google Scholar 

  18. W. W. Sun, S. R. Li, H. Zhou, et al. Z. Anorg. Allg. Chem., 2010, 636, 1386–1391.

    Article  CAS  Google Scholar 

  19. M. A. Halcrow, L. M. L. Chia, X. Liu, et al. J. Chem. Soc., Dalton Trans., 1999, 1753–1762.

    Google Scholar 

  20. S. Naskar, S. Naskar, H. Mayer-Figge, et al. Polyhedron, 2012, 35, 77–86.

    Article  CAS  Google Scholar 

  21. I. Banerjee, P. N. Samanta, K. K. Das, et al. Dalton Trans., 2013, 42, 1879–1892.

    Article  CAS  PubMed  Google Scholar 

  22. C. Diaz, J. Ribas, M. S. El Fallah, et al. Inorg. Chim. Acta, 2001, 312, 1–6.

    Article  CAS  Google Scholar 

  23. M. Mroueh, C. Daher, E. Hariri, et al. Chem. Biol. Interact., 2015, 231, 53–60.

    Article  CAS  PubMed  Google Scholar 

  24. M. M. Ghoneim, A. Z. El-Sonbati, A. A. El-Bindary, et al. Spectrochim. Acta Mol. Biomol. Spectrosc., 2015, 140, 111–131.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iqbal.

Additional information

Original Russian Text © 2018 M. Iqbal, S. Ali, M. N. Tahir.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 7, pp. 1678–1681, September-October, 2018.

Electronic supplementary material

10947_2018_1040_MOESM1_ESM.pdf

SUPPLEMENTARY MATERIALS TO: ASYMMETRIC OXYGEN BRIDGED COPPER(II) CARBOXYLATE: SYNTHESIS, COMPLETE CHARACTERIZATION, AND CRYSTAL STRUCTURE

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M., Ali, S. & Tahir, M.N. Asymmetric Oxygen Bridged Copper(II) Carboxylate: Synthesis, Complete Characterization, and Crystal Structure. J Struct Chem 59, 1619–1623 (2018). https://doi.org/10.1134/S0022476618070132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618070132

Keywords

Navigation