Skip to main content
Log in

A Quantum Chemical Study of Germanium-Substituent Bonding in Complex Compounds of Germanium

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Spatial and electronic structures of six-coordinated germanium compounds are calculated within МР2 and AIM methods using PC GAMESS-Firefly, MORPHY, and AIMALL software packages. Main topological characteristics of germanium-substituent bonds are determined in these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Patai. (Ed.), The Chemistry of Organic Germanium, Tin and Lead Compounds, Vol. 1. NY, Wiley, 1995

  2. Z. Rappoport and Y. Apeloig (Eds.), The Chemistry of Organic Germanium, Tin and Lead Compounds, Vol. 2. NY, Wiley, 2003.

  3. S. Nagendran and H. W. Roesky. Organometallics, 2008, 27, 457–470.

    Article  CAS  Google Scholar 

  4. P. G. Harrison. In: G. Wilkinson, R. D. Gillard, and J. A. McCleverty (Eds.), Comprehensive Coordination Chemistry I, vol. 3. NY, Pergamon Press, 1987, 183

    Google Scholar 

  5. J. Parr. In: J. A. McCleverty and T. J. Meyer (Eds.), Comprehensive Coordination Chemistry II, vol. 3. Oxford, Elsevier, 2004,545.

    Google Scholar 

  6. I. Saur, S. Garcia Alonso, and J. Barrau. Appl. Organomet. Chem., 2005, 19, 414–441.

    Article  CAS  Google Scholar 

  7. N. N. Greenwood and A. Earnshaw. Chemistry of the Elements, 2nd ed. Oxford, Elsevier, 2004.

    Google Scholar 

  8. J. Mason. Multinuclear NMR, Plenum, NY, 1987

    Book  Google Scholar 

  9. Y. Takeuchi, T. Takayama. Ann. Rep. NMR Spectrosc., 2005, 5, 155–215.

    CAS  Google Scholar 

  10. W. Levason, G. Reid, and W. Zhanget. Coord. Chem. Rev., 2011, 255, 1319–1341.

    Article  CAS  Google Scholar 

  11. E. I. Davydova, T. N. Sevast'yanova, A. Y. Timoshkin, A. V. Suvorov, and G. Frenking. Int. J. Quantum Chem., 2004, 100, 419–426.

    Article  CAS  Google Scholar 

  12. I. S. Ignatyev and H. F. Schaefer. J. Phys. Chem. A, 2001, 105, 7665–7671.

    Article  CAS  Google Scholar 

  13. V. P. Feshin and E. V. Feshina. Russ. J. Gen. Chem., 2007, 77, 1164–1166

    Article  CAS  Google Scholar 

  14. V. P. Feshin and E. V. Feshina. Russ. J. Gen. Chem., 2008, 27, 230–233.

    Google Scholar 

  15. A. Y. Timoshkin, E. I. Davydova, T. N. Sevast'yanova, A. V. Suvorov, and H. F. Schaefer. Int. J. Quantum Chem., 2002, 88, 436–451.

    Article  CAS  Google Scholar 

  16. E. I. Davydova, A. Y. Timoshkin, T. N. Sevast'yanova, A. V. Suvarov, and G. Frenking. J. Mol. Struct. THEOCHEM., 2006, 767, 103–117.

    Article  CAS  Google Scholar 

  17. A. A. Granovsky. GAMESS Firefly version 7.1.G. http:classic.chem.msu.su/gran/firefly/index.html.

  18. Keith Todd A. AIMAll (Version 12.11.09), TK Gristmill Software. Overland Park KS, USA, 2012.

  19. F. W. Biegler-Koning, R. F. Bader, and T. H. Tang. J. Comput. Chem., 1982, 3, 317–321.

    Article  Google Scholar 

  20. P. L. A. Popelier. MORPHY 98: A Topological Analysis Program, UMIST, England, EU, 1998.

    Google Scholar 

  21. Hung-Cheh Chiang, Mei-Huey Wang, and Chuen-Her Ueng. Acta Crystalogr., Sect. C: Cryst. Struct. Commun., 1993, 49, 244–346.

    Article  Google Scholar 

  22. N. W. Mitzel, U. Losehand, and K. Vojinovic. Inorg. Chem., 2001, 40, 5302–5307.

    Article  CAS  PubMed  Google Scholar 

  23. M. Hargittai. Chem. Rev., 2000, 100, 2233–2301.

    Article  CAS  PubMed  Google Scholar 

  24. R. Blom and A. Haaland. J. Mol. Struct., 1985, 128, 21–27.

    Article  CAS  Google Scholar 

  25. Cambridge Structural Database, release 2017; Mogul v 1.7.3 CSD System Molecular Geometry Library. The Cambridge Crystallographic Data Centre, 2017.

  26. R. Bader. Atoms in Molecules: A Quantum Theory, Clarendon Press, 1994.

    Google Scholar 

  27. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170–173.

    Article  CAS  Google Scholar 

  28. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. J. Chem. Phys., 2002, 117, 5529–5532.

    Article  CAS  Google Scholar 

  29. Nakanishi Waro, Hayashi Satoko, and Narahara Kenji. J. Phys. Chem. A, 2009, 113, 10050–10057.

    Google Scholar 

  30. A. Spackman Mark. Chem. Phys. Lett., 1999, 301, 425–429.

    Article  Google Scholar 

  31. A. A. Korlyukov, N. V. Alekseev, M. Yu. Antipin, et al. J. Mol. Struct., 2008, 875, 135–142.

    Article  CAS  Google Scholar 

  32. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2008, 49(5), 828–836.

    Article  CAS  Google Scholar 

  33. N. V. Alekseev and E. A. Chernyshev. J. Struct. Chem., 2010, 51(3), 419–427.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Alekseev.

Additional information

Original Russian Text © 2018 N. V. Alekseev.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 7, pp. 1569–1579, September-October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, N.V. A Quantum Chemical Study of Germanium-Substituent Bonding in Complex Compounds of Germanium. J Struct Chem 59, 1507–1517 (2018). https://doi.org/10.1134/S0022476618070028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618070028

Keywords

Navigation