Skip to main content
Log in

Electromagnetic Dressing of Graphene

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We present a theory to describe the interaction of electrons in gapped and gapless graphene with a strong off-resonant electromagnetic field (dressing field). This interaction (electromagnetic dressing) is shown to renormalize substantially electron velocities and the band gap in gapped graphene. Particularly, renormalized electronic parameters depend strongly on the field polarization: linearly polarized fields always reduce the gap, while circularly polarized fields break the equivalence of the valleys at various points of the Brillouin zone and can increase or decrease the corresponding band gaps. Moreover, a linearly polarized dressing field induces anisotropy of electron dispersion in the graphene plane. Consequently, dressing fields can be an effective tool to control electronic properties of graphene and be prospectively used in various optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänngi. In: Quantum Transport and Dissipation / Eds. T. Dittrich, P. Hänggi, G.–L. Ingold, B. Kramer, G. Schön, W. Zwerger. Weinheim: Wiley, 1998, 249–286.

  2. S. Kohler, J. Lehmann, and P. Hänggi. Phys. Rep., 2005, 406, 379.

    Article  CAS  Google Scholar 

  3. N. GoldMan and J. Dalibard. Phys. Rev. X, 2014, 4, 031027.

    Google Scholar 

  4. M. Holthaus. J. Phys. B, 2016, 49, 013001.

    Article  CAS  Google Scholar 

  5. S. Morina, O. V. Kibis, A. A. Pervishko, and I. A. Shelykh. Phys. Rev. B, 2015, 91, 155312.

    Article  CAS  Google Scholar 

  6. A. A. Pervishko, O. V. Kibis, S. Morina, and I. A. Shelykh. Phys. Rev. B, 2015, 92, 205403.

    Article  CAS  Google Scholar 

  7. K. Dini, O. V. Kibis, and I. A. Shelykh. Phys. Rev. B, 2016, 93, 235411.

    Article  CAS  Google Scholar 

  8. D. Yudin, O. V. Kibis, and I. A. Shelykh. New J. Phys., 2016, 18, 103014.

    Article  Google Scholar 

  9. O. V. Kibis, K. Dini, I. V. Iorsh, and I. A. Shelykh. Phys. Rev. B, 2017, 95, 125401.

    Article  Google Scholar 

  10. O. V. Kibis, S. Morina, K. Dini, and I. A. Shelykh. Phys. Rev. B, 2016, 93, 115420.

    Article  CAS  Google Scholar 

  11. K. Kristinsson, O. V. Kibis, S. Morina, and I. A. Shelykh. Sci. Rep., 2016, 6, 20082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. H. Castr.Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. Rev. Mod. Phys., 2009, 81, 109.

    Article  CAS  Google Scholar 

  13. A. C. Ferrari, F. Bonaccorso, V. Fal′ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia–Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. H. Hong, J.–H. Ahn, J. M. Kim, H. Zirath, B. J. va.Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret. Nanoscale, 2015, 7, 4598.

    Article  CAS  PubMed  Google Scholar 

  14. D. A. Romanov and O. V. Kibis. Phys. Lett. A, 1993, 178, 335.

    Article  CAS  Google Scholar 

  15. O. V. Kibis. JETP Lett. 1997, 66, 588.

    Article  Google Scholar 

  16. O. V. Kibis. Phys. Lett. A, 1998, 237, 292.

    Article  CAS  Google Scholar 

  17. O. V. Kibis. Phys. Lett. A, 1998, 244, 432.

    Article  CAS  Google Scholar 

  18. O. V. Kibis. Phys. Sol. State, 2001, 43, 2336.

    Article  CAS  Google Scholar 

  19. D. Lawton, A. Nogaret, M. V. Makarenko, O. V. Kibis, S. J. Bending, and M. Henini. Phys. E, 2002, 13, 699.

    Article  Google Scholar 

  20. O. V. Kibis. Phys. E, 2002, 12, 741.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kibis.

Additional information

Original Russian Text © 2018 O. V. Kibis, K. Dini, I. V. Iorsh, V. P. Dragunov, I. A. Shelykh.

Translated from Zhurnal Strukturnoi Khimii, Vol. 59, No. 4, pp. 903–906, May-June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibis, O.V., Dini, K., Iorsh, I.V. et al. Electromagnetic Dressing of Graphene. J Struct Chem 59, 867–869 (2018). https://doi.org/10.1134/S0022476618040170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618040170

Keywords

Navigation