Skip to main content
Log in

The Rat (Rattus norvegicus) as a Model Object for Acute Organophosphate Poisoning. 1. Biochemical Aspects

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The long-term effects of acute organophosphate (OP) poisoning remain poorly studied, while experimental models usually disregard species-related specificity of rodents as model objects. Here we present two toxicological models and a comparative analysis of a wide range of biochemical blood indices in their dynamics over 3 months after acute rat poisoning with paraoxon. As expected, the most sensitive biochemical index within the first hours and days after OP poisoning was whole blood acetylcholinesterase activity, which decreased by almost an order of magnitude in all experimental groups 3 h after poisoning. Changes in the parameters of carbohydrate and fat metabolism (triglyceride, free fatty acid, D-3-hydroxybutyrate, cholesterol and glycerol levels) were detected in experimental groups at different time points after poisoning. Statistically significant changes in a number of biochemical markers were found in positive control rats relative to intact rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shimoyama, M., Laulederkind, S.J., De Pons, J., Nigam, R., Smith, J.R., Tutaj, M., Petri, V., Hayman, G.T., Wang, S.J., Ghiasvand, O., Thota, J., and Dwinell, M.R., Exploring human disease using the rat genome database, Dis. Model. Mech., 2016, vol. 9,no. 10, pp. 1089–1095.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ellenbroek, B. and Youn, J., Rodent models in neuroscience research: is it a rat race? Dis. Model. Mech., 2016, vol. 9,no. 10, pp. 1079–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ukolov, A.I., Kessenikh, E.D., Radilov, A.S., and Goncharov, N.V., Toxicometabolomics: identification of markers of chronic exposure to low doses of aliphatic hydrocarbons, J. Evol. Biochem. Physiol., 2017, vol. 53,no. 1, pp. 25–36.

    Article  CAS  Google Scholar 

  4. Korf, E.A., Kubasov, I.V., Vonsky, M.S., Novozhilov, A.V., Runov, A.L., Kurchakova, E.V., Matrosova, E.V., Tavrovskaya, T.V., and Goncharov, N.V., Green tea extract increases expression of genes responsible for regulation of calcium balance in rat slow-twitch muscles under conditions of exhausting exercise, Bull. Exp. Biol. Med., 2017, vol. 164,no. 1, pp. 6–9. doi: 10.1007/s10517-017-3913-9

    Article  CAS  PubMed  Google Scholar 

  5. Mindukshev, I.V., Skverchinskaya, E.A., Khme-levskoy, D.A., Dobrylko, I.A., and Goncharov, N.V., Acetylcholinesterase inhibitor paraoxon augments oxidative stress induced in vitro in rat erythrocytes, Biol. Membr., 2017, vol. 34,no. 6, pp. 147–154. doi: 10.7868/S0233475517060081

    CAS  Google Scholar 

  6. Sobolev, V.E., Jenkins, R.O., and Goncharov, N.V., Sulfated glycosaminoglycans in bladder tissue and urine of rats after acute exposure to paraoxon and cyclophosphamide, Exp. Toxicol. Pathol., 2017, vol. 69,no 6, pp. 339–347.

    Article  CAS  PubMed  Google Scholar 

  7. Singh, D.P., Borse, S.P., Rana, R., and Nivsarkar, M., Curcumin, a component of turmeric, efficiently prevents diclofenac sodium-induced gastroenteropathic damage in rats: A step towards translational medicine, Food Chem. Toxicol., 2017, vol. 108, pp. 43–52.

    Article  CAS  PubMed  Google Scholar 

  8. Barker Haliski, M.L., Löscher, W., White, H.S., and Galanopoulou, A.S., Neuroinflammation in epileptogenesis: insights and translational perspectives from new models of epilepsy, Epilepsia, 2017, vol. 58,suppl. 3, pp. 39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hatfield, M.J., Umans, R.A., Hyatt, J.L., Edwards, C.C., Wierdl, M., Tsurkan, L., Taylor, M.R., and Potter, P.M., Carboxylesterases: general detoxifying enzymes, Chem. Biol. Interact., 2016, vol. 259, pp. 327–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lian, J., Nelson, R., and Lehner, R., Carboxyles-terases in lipid metabolism: from mouse to human, Protein Cell, 2018, vol. 9,no. 2, pp. 178–195.

    Article  CAS  PubMed  Google Scholar 

  11. Li, B., Sedlacek, M., Manoharan, I., Boopathy, R., Duysen, E.G., Masson, P., and Lockridge, O., Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma, Biochem. Pharmacol., 2005, vol. 70, pp. 1673–1684.

    Article  CAS  PubMed  Google Scholar 

  12. Goncharov, N.V., Belinskaya, D.A., Razygraev, A.V., and Ukolov, A.I., On the enzymatic activity of albumin, Russ. J. Bioorg. Chem., 2015, vol. 41,no. 2, pp. 113–124.

    Article  CAS  Google Scholar 

  13. Goncharov, N.V., Terpilovsky, M.A., Shmurak, V.I., Belinskaya, D.A., and Avdonin, P.V., Comparative analysis of esterase and paraoxonase activity of different types of albumin, Zh. Evol. Bio-khim. Fiziol., 2017, vol. 53,no. 4, pp. 241–250.

    Google Scholar 

  14. Goncharov, N.V., Belinskaya, D.A., Shmurak, V.I., Terpilowski, M.A., Jenkins, R.O. and Avdonin, P.V., Serum albumin binding and esterase activity: mechanistic interactions with organo-phosphates, Molecules, 2017, vol. 22,no. 7. Pii: E1201. doi: 10.3390/molecules22071201

    Google Scholar 

  15. Maxwell, D.M., Brecht, K.M., and O’Neill, B.L., The effect of carboxylesterase inhibition on in-terspecies differences in soman toxicity, Toxicol. Lett., 1987, vol. 39,no. 1, pp. 35–42.

    Article  CAS  PubMed  Google Scholar 

  16. Maxwell, D.M., The specificity of carboxylesterase protection against the toxicity of organophospho-rus compounds, Toxicol. Appl. Pharmacol., 1992, vol. 114,no. 2, pp. 306–312.

    Article  CAS  PubMed  Google Scholar 

  17. Duysen, E.G., Cashman, J.R., Schopfer, L.M., Nachon, F., Masson, P., and Lockridge, O., Differential sensitivity of plasma carboxylesterase-null mice to parathion, chlorpyrifos and chlorpyrifos oxon, but not to diazinon, dichlorvos, diisopropylfluorophosphate, cresylsaligenin phosphate, cyclo-sarin thiocholine, tabun thiocholine, and carbofu-ran, Chem. Biol. Interact., 2012, vol. 195,no. 3, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  18. Duysen, E.G., Koentgen, F., Williams, G.R., Timperley, C.M., Schopfer, L.M., Cerasoli, D.M., and Lockridge, O., Production of ES1 plasma carboxy-lesterase knockout mice for toxicity studies, Chem. Res. Toxicol., 2011, vol. 24, pp. 1891–1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flannery, B.M., Bruun, D.A., Rowland, D.J., Banks, C.N., Austin, A.T., Kukis, D.L., Li, Y., Ford, B.D., Tancredi, D.J., Silverman, J.L., Cherry, S.R., and Lein, P.J., Persistent neuroinflammation and cognitive impairment in a rat model of acute diisopropylfluorophosphate intoxication, J. Neuroinflam., 2016, vol. 13,no. 1, p. 267.

    Article  CAS  Google Scholar 

  20. Garnyuk, V.V., Voitenko, N.G., Volkova, M.O., Maksakova, A.M., and Goncharov, N.V., Hema-topoiesis in laboratory animals at acute intoxication by organophosphate toxic agents, Toksikol. Vestn., 2012, no. 4, pp. 35–40.

    Google Scholar 

  21. Shmurak, V.I., Kurdyukov, I.D., Nadeev, A.D., Voitenko, N.G., Glashkina, L.M., and Goncharov, N.V., Biochemical markers of intoxication with organophosphate toxic agents, Toksikol. Vestn., 2012, no. 4, pp. 30–34.

    Google Scholar 

  22. Chambers, J.P., Hartgraves, S.L., Murphy, M.R., Wayner, M.J., Kumar, N., and Valdes, J.J., Effects of three reputed carboxylesterase inhibitors upon rat serum esterase activity, Neurosci. Biobehav. Rev., 1991, vol. 15,no. 1, pp. 85–88.

    Article  CAS  PubMed  Google Scholar 

  23. Rukovodstvo po eksperimental’nomu (dokliniches-komu) izucheniyu novykh farmakologicheskikh veshchestv (Manual on Experimental (Preclinical) Study of New Pharmacological Agents), Khabriev, R.U., Ed., Moscow, 2005.

  24. Rukovodstvo po laboratornym zhivotnym i alterna-tivnym modelyam v biomeditsinskikh issledovani-yakh (Handbook of Laboratory Animals and Alternative Models in Biomedical Studies), Karkishchenko, N.N. and Grachev, S.V., Eds., Moscow, 2010.

  25. Prokofieva, D.S., Voitenko, N.G., Gustyleva, L.K., Babakov, V.N., Savelieva, E.I., Jenkins, R.O., and Goncharov, N.V., Microplate spectroscopic methods for determination of the organophosphate soman, J. Environ. Monit., 2010, vol. 12,no. 6, pp. 1349–1354.

    Article  CAS  PubMed  Google Scholar 

  26. Prokofieva, D.S., Jenkins, R.O., and Goncharov, N.V., Microplate biochemical determination of Russian VX: Influence of admixtures and avoidance of false negative results, Anal. Biochem., 2012, vol. 424,no. 2, pp. 108–113.

    Article  CAS  PubMed  Google Scholar 

  27. Phuntuwate, W., Suthisisang, C., Koanantakul, B., Mackness, M.I., and Mackness, B., Paraoxonase 1 status in the Thai population, J. Hum. Genet., 2005, vol. 50,no. 6, pp. 293–300.

    Article  CAS  PubMed  Google Scholar 

  28. Prez, F. and Granger, B.E., IPython: a system for interactive scientific computing, Comput. Sci. Eng., 2007, vol. 9,no. 3, pp. 21–29.

    Article  Google Scholar 

  29. McKinney, W., Data structures for statistical computing in python, Proc. of the 9th Python in Science Conference, 2010, vol. 445, pp. 51–56.

    Google Scholar 

  30. Van Der Walt, S., Colbert, S. C., and Varoquaux, G., The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 2011, vol. 13,no. 2, pp. 22–30.

    Article  Google Scholar 

  31. Hunter, J.D., Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 2007, vol. 9,no. 3, pp. 90–95.

    Article  Google Scholar 

  32. Benjamini, Y. and Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B, Methodol., 1995, vol. 57, pp. 289–300.

    Google Scholar 

  33. Sklan, E.H., Lowenthal, A., Korner, M., Ritov, Y., Landers, D.M., Rankinen, T., Bouchard, C., Leon, A.S., Rice, T., Rao, D.C., Wilmore, J.H., Skinner, J.S., and Soreq, H., Acetylcholinesterase/ paraoxonase genotype and expression predict anxiety scores in health, risk factors, exercise training, and genetics study, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101,no. 15, pp. 5512–5517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das, U.N., Acetylcholinesterase and butyrylcholin-esterase as possible markers of low-grade systemic inflammation, Med. Sci. Monit., 2007, vol. 13,no. 12, RA, 214–221.

    Google Scholar 

  35. Thayer, J.F. and Sternberg, E.M., Neural aspects of immunomodulation: focus on the vagus nerve, Brain Behav. Immun., 2010, vol. 24,no. 8, pp. 1223–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dong, M.X., Xu, X.M., Hu, L., Liu, Y., Huang, Y.J., and Wei, Y.D., Serum butyrylcholin-esterase activity: a biomarker for parkinson’s disease and related dementia, Biomed. Res. Int., 2017, vol. 2017, p. 1524107.

    PubMed  PubMed Central  Google Scholar 

  37. Shields, G.S., Moons, W.G., and Slavich, G.M., Inflammation, selfregulation, and health: an im-munologic model of self-regulatory failure, Per-spect. Psychol. Sci., 2017, vol. 12,no 4, pp. 588–612.

    Article  Google Scholar 

  38. Reale, M., Costantini, E., Di Nicola, M., D’ Angelo, C., Franchi, S., D’ Aurora, M., Di Bari, M., Orlando, V., Galizia, S., Ruggieri, S., Stuppia, L., Gasperini, C., Tata, A.M., and Gatta, V., Butyrylcholinesterase and acetylcholin-esterase polymorphisms in multiple sclerosis patients: implication in peripheral inflammation, Sci. Rep., 2018, vol. 8,no. 1, p. 1319.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kurdyukov, I.D., Shmurak, V.I., Nadeev, A.D., Voitenko, N.G., Prokofieva, D.S., and Goncharov, N.V., “Esterase status” of the organism at exposure to toxic substances and pharmaceutical preparations, Toksikol. Vestn., 2012, no. 6, pp. 6–13.

    Google Scholar 

  40. Orcholski, M.E., Khurshudyan, A., Shamskhou, E.A., Yuan, K., Chen, I.Y., Kodani, S.D., Morisseau, C., Hammock, B.D., Hong, E.M., Alexandrova, L., Alastalo, T.P., Berry, G., Zamanian, R.T., and de Jesus Perez, V.A., Reduced car-boxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension, Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, vol. 313,no. 2, L252–L266.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Iso, H., Jacobs, D.R. Jr., Wentworth, D., Neaton, J.D., and Cohen, J.D., Serum cholesterol levels and six-year mortality from stroke in 350.977 men screened for the multiple risk factor intervention trial, N. Engl. J. Med., 1989, vol. 320,no. 14, pp. 904–910.

    Article  CAS  PubMed  Google Scholar 

  42. Vauthey, C., de Freitas, G.R., van Melle, G., Devuyst, G., and Bogousslavsky, J., Better outcome after stroke with higher serum cholesterol levels, Neurology, 2000, vol. 54, no. 10, pp. 1944–1949.

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki, K., Izumi, M., Sakamoto, T., and Hayashi, M., Blood pressure and total cholesterol level are critical risks especially for hemorrhagic stroke in Akita, Japan, Cerebrovasc. Dis., 2011, vol. 31,no. 1, pp. 100–106.

    Article  CAS  PubMed  Google Scholar 

  44. Markaki, I., Nilsson, U., Kostulas, K., and Sjöstrand, C., High cholesterol levels are associated with improved long-term survival after acute ischemic stroke, J. Stroke Cerebrovasc. Dis., 2014, vol. 23,no. 1, e47–53.

    Article  Google Scholar 

  45. Zhao, W., An, Z., Hong, Y., Zhou, G., Guo, J., Zhang, Y., Yang, Y., Ning, X., and Wang, J., Low total cholesterol level is the independent predictor of poor outcomes in patients with acute ischemic stroke: a hospital-based prospective study, BMC Neurol., 2016, vol. 16, e36.

    Article  CAS  Google Scholar 

  46. Zhou, G., An, Z., Zhao, W., Hong, Y., Xin, H., Ning, X., and Wang, J., Sex differences in outcomes after stroke among patients with low total cholesterol levels: a large hospital-based prospective study, Biol. Sex Differ., 2016, vol. 7, e62.

    Article  Google Scholar 

  47. Fukui, K., Ferris, H.A., and Kahn, C.R., Effect of cholesterol reduction on receptor signaling in neurons, J. Biol. Chem., 2015, vol. 290,no. 44, pp. 26 383–26 392.

    Article  CAS  Google Scholar 

  48. Ferris, H.A., Perry, R.J., Moreira, G.V., Shulman, G.I., Horton, J.D., and Kahn, C.R., Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114,no. 5, pp. 1189–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Landin, K., Blennow, K., Wallin, A., and Gottfries, C.G., Low blood pressure and blood glucose levels in Alzheimer’s disease. Evidence for a hypometabolic disorder? J. Intern. Med., 1993, vol. 233,no. 4, pp. 357–363.

    Article  CAS  PubMed  Google Scholar 

  50. Marshall, W., Lapsley, M., and Day, A., Clinical Chemistry, Edinburgh, 2016.

    Google Scholar 

  51. Buchet, R., Millán, J.L., and Magne, D., Multisys-temic functions of alkaline phosphatases, Methods Mol. Biol., 2013, vol. 1053, pp. 27–51.

    Article  CAS  PubMed  Google Scholar 

  52. Deshpande, L.S., Blair, R.E., Huang, B.A., Phillips, K.F., and DeLorenzo, R.J., Pharmacological blockade of the calcium plateau provides neuroprotection following organophosphate paraoxon induced status epilepticus in rats, Neurotoxicol. Teratol, 2016, vol. 56, pp. 81–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Deshpande, L.S., Blair, R.E., Phillips, K.F., and DeLorenzo, R.J., Role of the calcium plateau in neuronal injury and behavioral morbidities following organophosphate intoxication, Ann. NY Acad. Sci., 2016, vol. 1374,no. 1, pp. 176–183.

    Article  CAS  PubMed  Google Scholar 

  54. Sebastián-Serrano, Á., de Diego-García, L., Mar-tínez Frailes, C, Ávila, J., Zimmermann, H., Millán, J.L., Miras-Portugal, M.T., and Díaz-Hernández, M., Tissue-nonspecific alkaline phosphatase regulates purinergic transmission in the central nervous system during development and disease, Com-put. Struct. Biotechnol. J., 2014, vol. 13, pp. 95–100.

    Article  CAS  Google Scholar 

  55. Abbott, C.A., Mackness, M.I., Kumar, S., Olukoga, A.O., Gordon, C, Arrol, S., Bhatnagar, D., Boulton, A.J., and Durrington, P.N., Relationship between serum butyrylcholinesterase activity, hy-pertriglyceridaemia and insulin sensitivity in diabetes mellitus, Clin. Sci. (Lond), 1993, vol. 85,no. 1, pp. 77–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Goncharov.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 2, pp. 104–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, N.V., Terpilowski, M.A., Shmurak, V.I. et al. The Rat (Rattus norvegicus) as a Model Object for Acute Organophosphate Poisoning. 1. Biochemical Aspects. J Evol Biochem Phys 55, 112–123 (2019). https://doi.org/10.1134/S0022093019020042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019020042

Keywords

Navigation