Skip to main content
Log in

Kinetic and Thermodynamic Characteristics of Lactate Dehydrogenase in Skeletal Muscles of Homeo- and Heterothermic Animals at Low Body Temperatures

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Kinetic and thermodynamic characteristics of lactate dehydrogenase (LDG) in skeletal muscles were analyzed in homeothermic animals (rats) under deep (20°C) artificial hypothermia and in heterothermic animals (ground squirrels) under natural hypothermia (hibernation). It was found that, despite different etiology of hypothermic states, changes in some LDG parameters both in homeo- and heterothermic animals at low body temperatures are unidirectional: the catalytic efficiency decreases, the optimum point on the concentration curve shifts towards higher concentrations, efficient activation energies and Ki values increase. At the same time, multidirectional changes in LDG Vmax and KM values as well as the degree of their manifestation in rats versus ground squirrels at low body temperatures indicate that the mechanisms, which regulate activity of this enzyme in animals with diverse strategies of thermal adaptation, are quite different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochachka, P. and Somero, G., Biochemical Adaptation, Oxford, 2002.

    Google Scholar 

  2. Emirbekov, E.Z. and Klichkhanov, N.K., Svobodnoradikal’nye protsessy i sostoyanie membran pri gipotermii (Free-radical Processes and the State of Membranes under Hypothermia), Rostov-on-Don, 2011.

    Google Scholar 

  3. Meilanov, I.S. and Avshalumov, M.V., Thermal compensation in homeothermic animals, Ross. Fiziol. Zh., 1997, vol. 83, no. 9, pp. 102–106.

    CAS  Google Scholar 

  4. Khalilov, R.A., Dzhafarova, A.M., Dzhabrailova, R.N., and Khizrieva, S.I., The kinetic and thermodynamic characteristics of lactate dehydrogenase in the rat brain during hypothermia, Neurochemical J., 2016, vol. 10, no. 2, pp. 156–165.

    Article  CAS  Google Scholar 

  5. Ruf, T. and Geiser, F., Daily torpor and hibernation in birds and mammals, Biol. Rev., 2015, vol. 90, pp. 891–926.

    Article  PubMed  Google Scholar 

  6. Kalabukhov, N.I., Spyachka mlekopitayushchikh (Hibernation in Mammals), Moscow, 1985.

    Google Scholar 

  7. Carey, H.V., Andrews, M.T., and Martin, S.L., Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature, Physiol. Rev., 2003, vol. 83, no. 4, pp. 1153–1181.

    Article  CAS  PubMed  Google Scholar 

  8. Khalilov, R.A., Meilanov, I.S., and Dzhafarova, A.M., A study of the kinetic charatceristics of lactate dehydrogenase in gastrocnemius muscles of ground squirrels during hibernation and in the dynamics of induced warming, Vestn. DNTs RAN, 2012, iss. 46, pp. 40–44.

    Google Scholar 

  9. Khalilov, R.A., Dzhafarova, A.M., and Dzhabrailova, R.N., A study of temperature dependence of lactate dehydrogenase in muscles of ground squirrels during hypothermia, Vestn. DGU, iss. 6, pp. 114–119.

  10. Lowry, D.H., Rosembrough, H.J., and Farr, A.L., Protein measurement with the Pholin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  Google Scholar 

  11. Zakhartsev, M., Johansen, T., Portner, H.O., and Blust, R., Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects, J. Exp. Biol., 2004, vol. 207, pp. 95–112.

    Article  CAS  PubMed  Google Scholar 

  12. Oda, T., Shimizu, K., Yamaguchi, A., Satoh, K., and Matsumoto, K., Hypothermia produces rat liver proteomic changes as in hibernating mammals but decreases endoplasmic reticulum chaperones, Cryobiol., 2012, vol. 65, pp. 104–112.

    Article  CAS  Google Scholar 

  13. Katzenback, B.A., Dawson, N.J., and Storey, K.B., Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis, J. Comp. Physiol., 2014, vol. 184, pp. 601–611.

    Article  CAS  Google Scholar 

  14. Fan, J., Hitosugi, T., Chung, T., Xie, J., Ge, Q., Gu, T., Polakiewicz, R., et al., Tyrosine phosphorylation of lactate dehydrogenase a is important for NADH/NAD+ redox homeostasis in cancer cells, Mol. Cell. Biol., 2011, vol. 31, no. 24, pp. 4938–4950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Forlemu, N., Njabonl, E., Carlson, K., Schmidt, E., Waingeh, V., and Thomasson, K., Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach, Proteins, 2011, vol. 79, no.10, pp. 2813–2827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Terao, Y., Miyamoto, S., Hirai, K., Kamiguchi, H., Ohta, H., Shimojo, M., Kiyota, Y., Asahi, S., Sakura, Y., and Shintani, Y., Hypothermia enhances heat-shock protein 70 production in ischemic brains, Neuroreport., 2009, vol. 20, no. 8, pp. 745–749.

    Article  CAS  PubMed  Google Scholar 

  17. Peng, H.L., Deng, H., Dyer, R.B., and Callender, R., Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism, Biochem., 2014, vol. 53, pp. 1849–1857.

    Article  CAS  Google Scholar 

  18. Pastukhov, Yu.F., Nevredinova, Z.G., and Slovikov, B.I., Annual budget of activity and energy costs in hibernating mammals, Dokl. Akad. Nauk SSSR, 1989, vol. 305, pp. 1270–1273.

    PubMed  Google Scholar 

  19. Cantó, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, 2009, vol. 458, pp. 1056–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vermillion, K.L., Anderson, K.J., Hampton, M., and Andrews, M.T., Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal, Physiol. Genomics, 2015, vol. 47, pp. 58–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cotton, C.J., Skeletal muscle mass and composition during mammalian hibernation, J. Exp. Biol., 2016, vol. 219, pp. 226–234.

    Article  PubMed  Google Scholar 

  22. Bell, R.A., Smith, J.C., and Storey, K.B., Purification and properties of glyceraldehyde-3-phosphate dehydrogenase from the skeletal muscle of the hibernating ground squirrel, Ictidomys tridecemlineatus, Peer J., 2014, vol. 2. doi 10.7717/peerj.634

  23. Hardie, D.G., Hawley, S.A., and Scott, J.W., AMP activated protein kinase development of the energy sensor concept, J. Physiol., 2006, vol. 574, no. 1, pp. 7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shikhamirova, Z.M., Ismailova, Zh.G., Astaeva, M.D., and Klichkhanov, N.K., Free-radical processes in synaptosomes of the ground squirrel brain during hibernation and awakening, Est. Nauki, Zh. Fund. Prikl. Issled., 2012, vol. 38, no. 1, pp. 213–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Dzhafarova.

Additional information

Original Russian Text © R.A. Khalilov, A.M. Dzhafarova, S.I. Khizrieva, V.R. Abdullaev, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 6, pp. 413–420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilov, R.A., Dzhafarova, A.M., Khizrieva, S.I. et al. Kinetic and Thermodynamic Characteristics of Lactate Dehydrogenase in Skeletal Muscles of Homeo- and Heterothermic Animals at Low Body Temperatures. J Evol Biochem Phys 54, 465–473 (2018). https://doi.org/10.1134/S0022093018060066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018060066

Key words

Navigation