Skip to main content
Log in

4-oxo-1,4-dihydrocinnoline Derivative with Phosphatase 1B Inhibitor Activity Enhances Leptin Signal Transduction in Hypothalamic Neurons

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Most of regulatory effects of leptin on feeding behavior and energy metabolism are implemented via the hypothalamic leptin system. Attenuation of its activity leads to hyperphagia, obesity and other metabolic disorders. To prevent these pathological conditions, it is necessary to develop approaches aimed at restoring the leptin system. Most promising of them is creating efficient inhibitors of protein phosphotyrosine phosphatase PTP1B, a negative regulator of leptin signaling. The aim of this work was to synthesize a new compound, ethyl-3-(hydroxymethyl)-4-oxo-1,4-dihydrocinnoline-6-carboxylate (PI-04), a 4-oxo-1,4-dihydrocinnoline derivative with a PTP1B inhibitor activity, and to study its effect on IRS2- and STAT3-dependent leptin pathways in culture of hypothalamic neurons isolated from 18-day-old rat embryos. It was shown that PI-04 enhances the stimulatory effect of leptin on phosphorylation of the IRS2 protein at the Ser731 residue and of the STAT3 transcriptional factor at the Tyr705 residue, suggesting a potentiation of functional responses of hypothalamic neurons to leptin in the presence of this compound. The potentiating effect of PI-04 on leptin signaling was implemented at micromolar concentrations when this substance had virtually no effect on neuronal survival. The data obtained are promising in terms of creating phosphatase PTP1B inhibitors based on 4-oxo-1,4-dihydrocinnoline, as well as the possibility of their further use to prevent and correct metabolic disorders caused by attenuated activity of the hypothalamic leptin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LepR:

leptin receptor

MTT:

3-(4,5-dimethylthiazol)-2,5-diphenyl-2-tetrazolium bromide

AKT:

serine/threonine protein kinase B (AKT-kinase)

PTP1B:

protein phosphotyrosine phosphatase 1B

STAT3 and STAT5:

signal transducers and type 3 and 5 transcriptional activators

References

  1. Friedman, J.M. and Halaas, J.L., Leptin and the regulation of body weight in mammals, Nature, 1998, vol. 395, pp. 763–770.

    Article  CAS  Google Scholar 

  2. Zhou, Y. and Rui, L., Leptin signaling and leptin resistance, Front. Med., 2013, vol. 7, pp. 207–222.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Shpakov, A.O., Derkach, K.V., and Berstein, L.M., Brain signaling systems in the type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases, Future Science OA(FSO), 2015, vol. 1, FSO25. doi: 10.4155/fso.15.23

    Google Scholar 

  4. Morris, D.L. and Rui, L., Recent advances in understanding leptin signaling and leptin resistance, Am. J. Physiol., 2009, vol. 297, pp. 1247–1259.

    Google Scholar 

  5. Myers, M.G., Leibel, R.L., Seeley, R.J., and Schwartz, M.W., Obesity and leptin resistance: distinguishing cause from effect, Trends Endocrinol. Metab., 2010, vol. 21, pp. 643–651.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. El-Haschimi, K., Pierroz, D.D., Hileman, S.M., Bjorbaek, C., and Flier, J.S., Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity, J. Clin. Invest., 2000, vol. 105, pp. 1827–1832.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Banks, W.A. and Farrell, C.L., Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible, Am. J. Physiol., 2003, vol. 285, pp. 10–15.

    Google Scholar 

  8. Belouzard, S., Delcroix, D., and Rouille, Y., Low levels of expression of leptin receptor at the cell surface result from constitutive endocytosis and intracellular retention in the biosynthetic pathway, J. Biol. Chem., 2004, vol. 279, pp. 28 499–28 508.

    Article  CAS  Google Scholar 

  9. Hosoi, T., Sasaki, M., Miyahara, T., Hashimoto, C., Matsuo, S., Yoshii, M., and Ozawa, K., Endoplasmic reticulum stress induces leptin resistance, Mol. Pharmacol., 2008, vol. 74, pp. 1610–1619.

    Article  CAS  PubMed  Google Scholar 

  10. Coppari, R. and Bjorbaek, C., Leptin revisited: its mechanism of action and potential for treating diabetes, Nat. Rev. Drug Discov., 2012, vol. 11, pp. 692–708.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cheng, A., Uetani, N., Simoncic, P.D., Chaubey, V.P., Lee-Loy, A., McGlade, C.J., Kennedy, B.P., and Tremblay, M.L., Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B, Dev. Cell, 2002, vol. 2, pp. 497–503.

    Article  CAS  PubMed  Google Scholar 

  12. Bence, K.K., Delibegovic, M., Xue, B., Gorgun, C.Z., Hotamisligil, G.S., Neel, B.G., and Kahn, B.B., Neuronal PTP1B regulates body weight, adiposity and leptin action, Nat. Med., 2006, vol. 12, pp. 917–924.

    CAS  PubMed  Google Scholar 

  13. Loh, K., Fukushima, A., Zhang, X., Galic, S., Briggs, D., Enriori, P.J., Simonds, S., Wiede, F., Reichenbach, A., Hauser, C., Sims, N.A., Bence, K.K., Zhang, S., Zhang, Z.Y., Kahn, B.B., Neel, B.G., Andrews, Z.B., Cowley, M.A., and Tiganis, T., Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance, Cell. Metab., 2011, vol. 14, pp. 684–699.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tsou, R.C. and Bence, K.K., Central regulation of metabolism by protein tyrosine phosphatases, Front. Neurosci., 2013, vol. 6, p. 192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kaszubska, W., Falls, H.D., Schaefer, V.G., Haasch, D., Frost, L., Hessler, P., Kroeger, P.E., White, D.W., Jirousek, M.R., and Trevillyan, J.M., Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line, Mol. Cell. Endocrinol., 2002, vol. 195, pp. 109–118.

    Article  CAS  PubMed  Google Scholar 

  16. Tsou, R.C., Zimmer, D.J., De Jonghe, B.C., and Bence, K.K., Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice, Endocrinology, 2012, vol. 153, pp. 4227–4237.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cho, H., Protein tyrosine phosphatase 1B (PTP1B) and obesity, Vitam. Horm., 2013, vol. 91, pp. 405–424.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, S. and Zhang, Z.Y., PTP1B as a drug target: recent developments in PTP1B inhibitor discovery, Drug Discov. Today, 2007, vol. 12, pp. 373–381.

    Article  CAS  PubMed  Google Scholar 

  19. Sorokoumov, V.N. and Shpakov, A.O., Protein phosphotyrosine phosphatase 1B: structure, functions, role in the development of metabolic disorders, and their correction by the enzyme inhibitors, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 4, pp. 259–270.

    Article  CAS  Google Scholar 

  20. Zhi, Y., Gao, L.X., Jin, Y., Tang, C.L., Li, J.Y., Li, J., and Long, Y.Q., 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B, Bioorg. Med. Chem., 2014, vol. 22, pp. 3670–3683.

    Article  CAS  PubMed  Google Scholar 

  21. Bakke, J. and Haj, F.G., Protein-tyrosine phosphatase 1B substrates and metabolic regulation, Semin. Cell Dev. Biol., 2015, vol. 37, pp. 58–65.

    Article  CAS  PubMed  Google Scholar 

  22. Shpakov, A.O., The brain leptin signaling system and its functional state in metabolic syndrome and type 2 diabetes mellitus, J. Evol. Biochem. Physiol., 2016, vol. 52, no. 3, pp. 177–195.

    Article  CAS  Google Scholar 

  23. Bhattarai, B.R., Kafle, B., Hwang, J.-S., Ham, S.W., Lee, K.-H., Park, H., Han, I.O., and Cho, H., Novel thiazolidine dione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-? activators, Bioorg. Med. Chem. Lett., 2010, vol. 20, pp. 6758–6763.

    Article  CAS  PubMed  Google Scholar 

  24. Ito, M., Fukuda, S., Sakata, S., Morinaga, H., and Ohta, T., Pharmacological effects of JTT-551, a novel protein tyrosine phosphatase 1B inhibitor, in diet-induced obesity mice, J. Diabetes Res., 2014, vol. 2014. doi: 10.1155/2014/680348

  25. Niswender, K.D., Morton, G.J., Stearns, W.H., Rhodes, C.J., Myers, M.G., Jr., and Schwartz, M.W., Intracellular signalling. Key enzyme in leptin-induced anorexia, Nature, 2001, vol. 413, pp. 794–795.

    Article  CAS  PubMed  Google Scholar 

  26. Lin, X., Taguchi, A., Park, S., Kushner, J.A., Li, F., Li, Y., and White, M.F., Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes, J. Clin. Invest., 2004, vol. 114, pp. 908–916.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Jiang, L., You, J., Yu, X., Gonzalez, L., Yu, Y., Wang, Q., Yang, G., Li, W., Li, C., and Liu, Y., Tyrosine-dependent and-independent actions of leptin receptor in control of energy balance and glucose homeostasis, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 18 619–18 624.

    Article  Google Scholar 

  28. Piper, M.L., Unger, E.K., Myers, M.G., Jr., and Xu, A.W., Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons, Mol. Endocrinol., 2008, vol. 22, pp. 751–759.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Zakharova.

Additional information

Original Russian Text © I.O. Zakharova, V.N. Sorokoumov, L.V. Bayunova, K.V. Derkach, A.O. Shpakov, 2018, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2018, Vol. 54, No. 4, pp. 240–246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.O., Sorokoumov, V.N., Bayunova, L.V. et al. 4-oxo-1,4-dihydrocinnoline Derivative with Phosphatase 1B Inhibitor Activity Enhances Leptin Signal Transduction in Hypothalamic Neurons. J Evol Biochem Phys 54, 273–280 (2018). https://doi.org/10.1134/S0022093018040038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093018040038

Key words

Navigation