Advertisement

The Diffusion Capacity of the Hematoparenchymal Barrier in Mammalian and Marine Fish Skeletal Muscles

  • A. A. Soldatov
Comparative and Ontogenic Biochemistry
  • 8 Downloads

Abstract

Analysis of own and literature data shows that oxygen tension and mass transfer in skeletal muscles of higher and lower vertebrates (mammals, teleosts) are quite comparable. Oxygen consumption in fish muscles is 2–6 times lower and occurs at higher diffusion gradients of PO2 (blood ↔ muscles: 45–57 hPa). Wei ghted mean values of PO2 in fish muscles (with allowance for muscle composition) are minimum (5–12 hPa). As compared to mammals, they exhibit an extremely low diffusion capacity of the hematoparenchymal barrier (0.0014–0.0055 mLO2 min–1 100 g–1 hPa–1) which appears to rely on diffusion characteristics of cell membranes. Apparently, this is the main reason that accounts for low values of tissue PO2 as well as low efficacy and oxygen utilization degree in muscles of this taxonomic group of animals.

Keywords

oxygen mass transfer in blood oxygen tension in blood and tissues diffusion capacity of hematoparenchymal barrier mammals teleosts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savina, M.V., Mekhanizmy adaptatsii tkanevogo dykhaniya v evolyutsii pozvonochnykh (Mechanisms of Adaptation of Tissue Respiration in the Evolution of Vertebrates), St. Petersburg, 1992.Google Scholar
  2. 2.
    Bennett, A.F., Activity metabolism of the lower vertebrates, Ann. Rev. Physiol., 1978, vol. 40, pp. 447–469.CrossRefGoogle Scholar
  3. 3.
    Buck, L.T. and Hochachka, P.W., Anoxic suppression of Na+–K+-ATPase and constant membrane potential in hepatocytes: support for channel arrest, Am. J. Physiol., 1993, vol. 265, pp. R1020–1025.PubMedGoogle Scholar
  4. 4.
    Johansson, D. and Nilsson, G.E., Roles of energy status, K+-ATP channels and channel arrest in fish brain K+ gradient dissipation during anoxia, J. Exp. Biol., 1995, vol.198, pp. 2575–2580.PubMedGoogle Scholar
  5. 5.
    Knickerbocker, D.L. and Lutz, P.L., Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain, J. Exp. Biol., 2001, vol. 204, pp. 3547–3551.PubMedGoogle Scholar
  6. 6.
    Doll, C.J., Hochachka, P.W., and Reiner, P.B., Reduced ionic conductance in turtle brain, Am. J. Physiol., 1993, vol. 265, pp. R923–R928.Google Scholar
  7. 7.
    Hochachka, P.W. and Somero, G.N., Biochemical Adaptation: Mechanism and Process in Physiological Evolution, Oxford University, 2002.Google Scholar
  8. 8.
    Hulbert, A.J., Else, P.L., Manolis, S.C., and Brand, M.D., Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodilys) and allometric relationships for ectotherms, J. Comp. Physiol., 2002, vol. 172, pp. 387–397.CrossRefGoogle Scholar
  9. 9.
    Hochachka, P.W. and Lutz, P.L., Mechanism, origin, and evolution of anoxia tolerance in animals, Comp. Biochem. Physiol., 2001, vol. 130B, pp. 435–459.CrossRefGoogle Scholar
  10. 10.
    McKenzie, D.J., Wong, S., Randall, D.J., Egginton, S., Taylor, E.W., and Farrell, A.P., The effects of sustained exercise and hypoxia upon oxygen tensions in the red muscle of rainbow trout, J. Exp. Biol., 2004, vol. 207, pp. 3629–3637.CrossRefPubMedGoogle Scholar
  11. 11.
    Soldatov, A.A., Organ blood flow and vessels of microcirculatory bed in fish (review), J. Evol. Biochem. Physiol., 2006, vol. 42, no. 3, pp. 243–252.CrossRefGoogle Scholar
  12. 12.
    Bickler, Ph.E. and Buck, L.T., Hypoxia tolerance in reptiles, amphibians and fishes: life with variable oxygen availability, Ann. Rev. Physiol., 2007, vol. 69, pp. 145–170.CrossRefGoogle Scholar
  13. 13.
    Jung, F., Kessler, H., Pindur, G., Sternizky, R., and Franke, R.P., Intramuscular oxygen partial pressure in the healthy during exercise, Clin. Hemorheol. Microcirc., 1999, vol. 21, pp. 25–33.PubMedGoogle Scholar
  14. 14.
    Berezovsky, V.A., Napryazhenie kisloroda v tkanyakh zhivotnykh i cheloveka (Oxygen Tension in Animal and Human Tissues), Kiev, 1975.Google Scholar
  15. 15.
    Berezovsky, V.A. and Kolotilov, N.N., Biofizicheskie kharakteristiki tkanei cheloveka (Biophysical Characteristics of Human Tissues), Kiev, 1990.Google Scholar
  16. 16.
    Hutter, J., Habler, O., Kleen, M., Tiede, M., Podtschaske, A., Kemming, G., Corso, C., Batra, S., Keipert, P., Faithfull, S., and Messmer, K., Effect of acute normovolemic hemodilution on distribution of blood flow and tissue oxygenation in dog skeletal muscle, J. Appl. Physiol., 1999, vol. 86, pp. 860–866.CrossRefPubMedGoogle Scholar
  17. 17.
    Nosar, V.I. and Zhivotovskaya, N.A., Effect of helium–oxygen gas mixtures on oxygen mass transfer across the hematoparenchymal barrier, Fiziol. Zh., 1984, vol. 30, no. 4, pp. 454–459.PubMedGoogle Scholar
  18. 18.
    Behnke, B.J., Kindig, C.A., Musch, T.I., Koga, S., and Poole, D.C., Dynamics of microvascular oxygen pressure across the rest-exercise transition in rat skeletal muscle, Respir. Physiol., 2001, vol. 126, pp. 53–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Kolchinskaya, A.Z., Mankovskaya, I.N., and Misura, A.G., Dykhanie i kislorodnye rezhimy organizma del’finov (Respiration and Oxygen Regimes of Dolphin Organism), Kiev, 1980.Google Scholar
  20. 20.
    Egginton, S., Cordiner, S., and Skilbeck, C., Thermal compensation of peripheral oxygen transport in skeletal muscle of seasonally acclimatized trout, Am. J. Physiol., 2000, vol. 279, pp. R375–R388.CrossRefGoogle Scholar
  21. 21.
    Farrell, A.P. and Clutterham, S.M., On-line venous oxygen tension in rainbow trout during graded exercise at two acclimation temperatures, J. Exp. Biol., 2003, vol. 206, pp. 487–496.CrossRefPubMedGoogle Scholar
  22. 22.
    Jones, D.R., Brill, R.W., and Mense, D.C., The influence of blood gas properties on gas tensions and pH of ventral and dorsal aortic blood in freeswimming tuna, Euthynnus affinis, J. Exp. Biol., 1986, vol. 120, pp. 201–213.Google Scholar
  23. 23.
    Soldatov, A.A., Metabolic mechanisms of adaptation of Black Sea fish to hypoxic conditions, Doctorate Sci Diss., 2007.Google Scholar
  24. 24.
    Belaud, A., Trotter, Y., and Peyraud, V., Continuous evaluation of PaO2 in fish: recording and data processing, J. Exp. Biol., 1979, vol. 82, pp. 321–330.PubMedGoogle Scholar
  25. 25.
    Peyraud-Waitzenegger, M., Simultaneous modifications of ventilation and arterial PO2 by catecholamines in the eel, Anguilla anguilla L.: participation of a and β effects, J. Comp. Physiol., 1979, vol. 129B, no. 4, pp. 343–354.CrossRefGoogle Scholar
  26. 26.
    Farrel, A.P. and Driedzic, W.R., A comparison of cardiovascular variables in resting eel pout and sea raven, Bull. Mt. Desert. Isl. Lab., 1980, vol. 20, pp. 28–30.Google Scholar
  27. 27.
    D’Amico-Martel, A.L. and Cech, J.J., Peripheral vascular resistance in the gills of the winter flounder Pseudopleuronectes americanus, Comp. Biochem. Physiol., 1978, vol. 59A, no. 4, pp. 419–423.CrossRefGoogle Scholar
  28. 28.
    Hemmingsen, E.A. and Douglas, E.L., Respiratory and circulatory response in a hemoglobin-free fish Chaenocephalus aceratus to changes in temperature and oxygen tension, Comp. Biochem. Physiol., 1972, vol. 43A, no. 4, pp. 1031–1043.CrossRefGoogle Scholar
  29. 29.
    Soldatov, A.A., Experimental study of oxygen tension distribution in muscle tissue of marine fish, Zh. Evol. Biokhim. Fiziol., 1993, vol. 26, no. 5–6, pp. 656–659.Google Scholar
  30. 30.
    Soldatov, A.A., Cytochrome activity and oxygen tension in muscle tissue of marine fish with different activitiy, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, no. 2, pp. 142–146.Google Scholar
  31. 31.
    Soldatov, A.A., Features of organization of cytochrome systems and oxygen regime in skeletal muscles of marine fish, Ukr. Biokhim. Zh., 1998, vol. 70, no. 4, pp. 46–51.PubMedGoogle Scholar
  32. 32.
    Vizleb, E., Functions of the vascular system, Fiziologiya Cheloveka (Human Physiology), vol. 2, 2005, Moscow, pp. 498–567.Google Scholar
  33. 33.
    Sparks, H.V., Skin and muscles, Perifericheskoe krovoobrashchenie (Peripheral Blood Circulation), Moscow, 1982, pp. 237–286.Google Scholar
  34. 34.
    Cameron, J.N., Blood flow distribution as indicated by tracer microspheres in resting and hypoxic Arctic grayling (Thymallus arcticus), Comp. Biochem. Physiol., 1975, vol. 52A, no. 3, pp. 441–444.CrossRefGoogle Scholar
  35. 35.
    Shoshenko, K.A., Baranov, V.I., Brod, V.I., Vyazovoy, V.V., Golub, A.S., Ivanova, S.F., and Neshumova, T.V., Organ blood supply and features of oxygen transport in muscles, Issledovaniya energetiki dvizheniya ryb (Studies of Fish Locomotion Energetics), Novosibirsk, 1984, pp. 78–115.Google Scholar
  36. 36.
    Kakuno, A., Sezaki, K., and Ikeda, Y., Comparative hematology among 33 fish species of Ostaryophysi, Bull. Natl. Res. Inst. Fish. Sci. Japan, 1996, no. 8, pp. 15–27.Google Scholar
  37. 37.
    Lay, P.A. and Baldwin, J., What determines the size of teleost erythrocytes? Correlation with oxygen transport and nuclear volume, Fish Physiol. Biochem., 1999, vol. 20, pp. 31–35.CrossRefGoogle Scholar
  38. 38.
    Soldatov, A.A., Features of organization and functioning of the red blood system in fish (a review), Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 3, pp. 217–223.PubMedGoogle Scholar
  39. 39.
    Mathieu-Costello, O., Brill, R.W., and Hochachka, P.W., Structural basis for oxygen delivery: muscle capillaries and manifolds in tuna red muscle, Comp. Biochem. Physiol., 1996, vol. 113A, no. 1, pp. 25–31.CrossRefGoogle Scholar
  40. 40.
    Johnston, I.A. and Ball, D., Thermal stress and muscle function in fish, Soc. Exp. Biol. Sem. Ser., 1997, no. 61, pp. 79–104.Google Scholar
  41. 41.
    Soldatov, A.A. and Parfenova, I.A., Volumetric blood flow and oxygen mass transfer in skeletal muscles of benthic and pelagic marine fish, Aktual. Vopr. Biol. Fiz. Khim. (Topical Issues of Biological Physics and Chemistry), Xth Int. Sci.-Techn. Conf., Sevastopol, 2015, pp. 20–24.Google Scholar
  42. 42.
    Rasio, E.A., Bendayan, M., and Goresky, C.A., Effect of temperature change on the permeability of eel rete capillaries, Circ. Res., 1992, vol. 70, no. 2, pp. 272–284.CrossRefPubMedGoogle Scholar
  43. 43.
    Nichols, D.J., Fluid volumes in rainbow trout, Salmo gairdneri: application of compartmental analysis, Comp. Biochem. Physiol., 1987, vol. 87A, no. 3, pp. 703–709.CrossRefGoogle Scholar
  44. 44.
    Riehl, R., Ultrastructure of the capillaries in the gonopodium of the mosquitofish, Heterandria formosa Agassiz, 1853 (Pisces, Poeciliidae), Int. J. Acad. Ichthyol. Modinagar., 1983, vol. 4, no. 1–2, pp. 29–33.Google Scholar
  45. 45.
    Nikinmaa, M., Soivio, A., and Railo, E., Blood volume of Salmo gairdneri: influence of ambient temperature, Comp. Biochem Physiol., 1981, vol. 69, no. 4, pp. 767–769.CrossRefGoogle Scholar
  46. 46.
    Berezovsky, V.A. and Sushko, B.S., Oxygen concentration profile in the cell and some issues of free oxygen translocation in biological objects, Fiziol. Zh., 1984, vol. 30, no. 3, pp. 345–355.Google Scholar
  47. 47.
    Hills, B.A., Hughes, G.M., and Koyama, T., Oxygenation and deoxygenation kinetics of red cells in isolated lamellae of fish gills, J. Exp. Biol., 1982, vol. 98, pp. 269–275.PubMedGoogle Scholar
  48. 48.
    Brand, M.D., Couture, P., and Else, P.L., Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile, Biochem. J., 1991, vol. 275, pp. 81–86.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Zabelinsky, S.A., Chebotaryova, M.A., Shukolyukova, E.P., and Krivchenko, A.I., Fatty acid composition of erythrocyte membrane in the lamprey, frog and rat, and absorption spectra of their lipid extracts, Zh. Evol. Biokhim. Fiziol., 2014, vol. 50, no. 4, pp. 269–274.Google Scholar
  50. 50.
    Londraville, R.L. and Sidell, B.D., Ultrastructure of aerobic muscle in antarctic fishes may contribute to maintenance of diffusive fluxes, J. Exp. Biol., 1990, vol. 150, pp. 205–220.Google Scholar
  51. 51.
    Soldatov, A.A., Oxygen mass transfer, utilization and tension in skeletal muscles of marine fish (comparative–physiological aspects), Nauch. Trudy III S’ezda Fiziol. SNG, Moscow, Yalta, 2011, p. 286.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.A.O. Kovalevsky Institute of Marine Biological StudiesRussian Academy of SciencesSevastopolRussia

Personalised recommendations