Advertisement

Evolutionary Aspects of Cardioprotection

  • I. V. Shemarova
  • V. P. Nesterov
  • S. M. Korotkov
  • Yu. A. Sylkin
Reviews
  • 14 Downloads

Abstract

The review addresses the mechanisms of adaptation of the myocardium and cells of the cardiovascular system to hypoxia and ischemia as well as biochemical mechanisms of cardioprotection in animals of different phylogenetic levels. A special focus is placed on general adaptive strategies developed by evolutionarily distant animals in response to hypoxia and ischemia and on preconditioning and myocardial hibernation phenomena.

Keywords

cardioprotection hypoxia ischemia preconditioning hibernation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferrari, R., Ceconi, C., Curello, S., Cargnoni, A., Alfieri, O., Pardini, A., Marzollo, P., and Visioli, O., Oxygen free radicals and myocardial damage: protective role ofthiol-containing agents, Am. J. Med., 1991, vol. 91, pp. S95–S105.CrossRefGoogle Scholar
  2. 2.
    Dolzhenko, M.N., To the question of the expediency of metabolic cardioprotection in the era of evidence-based medicine, ML, 2012, nos. 2–3 (88–89), pp. 1–8.Google Scholar
  3. 3.
    Spath, N.B., Mills, N.L., and Cruden, N.L., Novel cardioprotective and regenerative therapies in acute myocardial infarction: a review of recent and ongoing clinical trials, Future Cardiol., 2016, vol. 12, pp. 655–672.CrossRefPubMedGoogle Scholar
  4. 4.
    Agadzhanyan, N.A., Polunin, I.N., Stepanov, V.K., and Polyakov, V.N., Chelovek v usloviyakh gipokapnii i giperkapnii (A Man under Hypocapnic and Hypercapnic Conditions), Astrakhan, Moscow, 2001.Google Scholar
  5. 5.
    Gridin, L.A., Modern ideas about physiological and medioprophilactic effects of hypoxia and hypercapnia, Meditsina, 2016, no. 3, pp. 45–68.Google Scholar
  6. 6.
    Charniy, A.M., Patofiziologiya gipoksicheskikh sostoyaniy (Pathophysiology of Hypoxic States), Moscow, 1961.Google Scholar
  7. 7.
    Shik, L.L. and Kanaev, N.N., Rukovodstvo po klinicheskoi fiziologii dykhaniya (Handbook of Clinical Physiology of Respiration), Leningrad, 1980.Google Scholar
  8. 8.
    Barbashova, Z.I., Akklimatizatsiya k gipoksii i ee fiziologicheskie mekhanizmy (Acclimation to Hypoxia and its Physiological Mechanisms), Leningrad, 1960.Google Scholar
  9. 9.
    Nilsson, G.E., Vaage, J., and Stenslkken, K.O., Oxygen-and temperature-dependent expression of survival protein kinases in crucian carp (Carassius carassius) heart and brain, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, vol. 308, pp. 50–61.CrossRefGoogle Scholar
  10. 10.
    Ilyina, T.N., Ilyukha, V.A., Baishnikova, I.V., Belkin, V.V., Sergina, S.N., and Antonova, E.P., Antioxidant defense system in tissues of semiaquatic mammals, J. Evol. Biochem. Physiol., 2017, vol. 53, no. 4, pp. 282–288.CrossRefGoogle Scholar
  11. 11.
    Silkin, Yu.A. and Silkina, E.N., Effect of hypoxia on physiological and biochemical blood parameters in some marine fish, Zh. Evol. Biokhim. Fiziol., 2005, vol. 41, no. 5, pp. 421–425.PubMedGoogle Scholar
  12. 12.
    Nayler, W.G. and Daily, M.D., Fiziologiya i pathofiziologiya serdtsa (Physiology and Pathophysiology of the Heart), Moscow, 1990, vol. l, pp. 556–578.Google Scholar
  13. 13.
    Allen, D.G. and Orchard, C.H., Measurements of intracellular calcium concentration in heart muscle: the effects of inotropic interventions and hypoxia, J. Mol. Cell Cardiol., 1984, vol. 16, pp. 117–128.CrossRefPubMedGoogle Scholar
  14. 14.
    Potter, S. and Fothergill-Gilmore, L.A., Molecular evolution: The origin of glycolysis, Biochem. Educ., 1993, vol. 21, pp. 45–48.CrossRefGoogle Scholar
  15. 15.
    Oslancová, A. and Janecek, S., Evolutionary relatedness between glycolytic enzymes most frequently occurring in genomes, Folia Microbiol. (Praha), 2004, vol. 49, pp. 247–258.CrossRefGoogle Scholar
  16. 16.
    Meerson, F.Z., Adaptation medicine: mechanisms and protective effects of adaptation, Hypoxia Medical J., M., 1993, pp. 168–226.Google Scholar
  17. 17.
    Czyzyk-Krzeska, M.F., Molecular aspects of oxygen sensing in physiological adaptation to hypoxia, Respir-Physiol., 1997, vol. 110, pp. 99–111.CrossRefPubMedGoogle Scholar
  18. 18.
    Guo, H.C., Guo, F., Zhang, L.N., Zhang, R., Chen, Q., Li, J.X., Yin, J., and Wang, Y.L., Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury, Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 300, pp. H2280–H2287.CrossRefPubMedGoogle Scholar
  19. 19.
    Seehase, M., Quentin, T., Wiludda, E., Hellige, G., Paul, T., and Schiffmann, H., Gene expression of the Na–Ca2+ exchanger, SERCA2a and calsequestrin after myocardial ischemia in the neonatal rabbit heart, Biol. Neonate, 2006, vol. 90, pp. 174–184.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang, W., Peng, Y., Wang, Y., Zhao, X., and Yuan, Z., Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway, Clin. Exp. Pharmacol. Physiol., 2009, vol. 36, pp. 899–903.CrossRefPubMedGoogle Scholar
  21. 21.
    Viswanath, K., Bodiga, S., Balogun, V., Zhang, A., and Bodiga, V.L., Cardioprotective effect of zinc requires ErbB2 and Akt during hypoxia/reoxygenation, Biometals, 2011, vol. 24, pp. 171–180.CrossRefPubMedGoogle Scholar
  22. 22.
    Silverman, H.S., Wei, S., Haigney, M.C., Ocampo, C.J., and Stern, M.D., Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia, Circ. Res., 1997, vol. 80, pp. 699–707.CrossRefPubMedGoogle Scholar
  23. 23.
    Sun, Y. and MacRae, T.H., Small heat shock proteins: molecular structure and chaperone function, Cell Mol. Life Sci., 2005, vol. 62, pp. 2460–2476.CrossRefPubMedGoogle Scholar
  24. 24.
    Paier, A., Agewall, S., and Kublickiene, K., Expression of heat shock proteins and nitrotyrosine in small arteries from patients with coronary heart disease, Heart Vessels, 2009, vol. 24, pp. 260–266.CrossRefPubMedGoogle Scholar
  25. 25.
    Vilahur, G., Cubedo, J., Casani, L., Padro, T., Sabate-Tenas, M., Badimon, J.J., and Badimon, L., Reperfusion-triggered stress protein response in the myocardium is blocked by post-conditioning. Systems biology pathway analysis highlights the key role of the canonical aryl-hydrocarbon receptor pathway, Eur. Heart J., 2013, vol. 34, pp. 2082–2093.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang, B., Zhou, H.S., Cheng, Q., Lei, L., and Hu, B., Overexpression of HSP27 in cultured human aortic smooth muscular cells reduces apoptosis induced by low-frequency and low-energy ultrasound by inhibition of an intrinsic pathway, Genet. Mol. Res., 2013, vol. 12, pp. 6588–6601.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu, J., Chen, P., Li, Y., Ardell, C., Der, T., Shohet, R., Chen, M., and Wright, G.L., HIF-1a in heart: protective mechanisms, Am. J. Physiol. Heart Circ. Physiol., 2013, vol. 305, pp. H821–H828.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Semenza, G.L., Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology, Trends Mol. Med., 2001, vol. 7, pp. 345–350.CrossRefPubMedGoogle Scholar
  29. 29.
    Bekeredjian, R., Walton, C.B., MacCannell, K.A., Ecker, J., Kruse, F., Outten, J.T., Sutcliffe, D., Gerard, R.D., Bruick, R.K., and Shohet, R.V., Conditional HIF-1alpha expression produces a reversible cardiomyopathy, PLoS One, 2010, vol. 5, p. e11693.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guimarães-Camboa, N., Stowe, J., Aneas, I., Sakabe, N., Cattaneo, P., Henderson, L., Kilberg, M.S., Johnson, R.S., Chen, J., McCulloch, A.D., Nobrega, M.A., Evans, S.M., and Zambon, A.C., HIF1a Represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes, Dev. Cell, 2015, vol. 33, pp. 507–521.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marden, J.H., Fescemyer, H.W., Schilder, R.J., Doerfler, W.R., Vera, J.C., and Wheat, C.W., Genetic variation in HIF signaling underlies quantitative variation in physiological and life-history traits within lowland butterfly populations, Evolution, 2013, vol. 67, pp. 1105–1115.CrossRefPubMedGoogle Scholar
  32. 32.
    Zeng, L., Wang, Y.H., Ai, C.X., Zheng, J.L., Wu, C.W., and Cai, R., Effects of β-glucan on ROS production and energy metabolism in yellow croaker (Pseudosciaena crocea) under acute hypoxic stress, Fish Physiol. Biochem., 2016, vol. 42, pp. 1395–1405.CrossRefPubMedGoogle Scholar
  33. 33.
    Yin, H.L., Luo, C.W., Dai, Z.K., Shaw, K.P., Chai, C.Y., and Wu, C.C., Hypoxia-inducible factor-1a, vascular endothelial growth factor, inducible nitric oxide synthase, and endothelin-1 expression correlates with angiogenesis in congenital heart disease, Kaohsiung J. Med. Sci., 2016, vol. 32, pp. 348–355.CrossRefPubMedGoogle Scholar
  34. 34.
    Yue, X., Lin, X., Yang, T., Yang, X., Yi, X., Jiang, X., Li, X., Li, T., Guo, J., Dai, Y., Shi, J., Wei, L., Youker, K.A., Torre-Amione, G., Yu, Y., Andrade, K.C., and Chang, J., Rnd3/RhoE modulates hypoxia-inducible factor 1a/vascular endothelial growth factor signaling by stabilizing hypoxia-inducible factor 1a and regulates responsive cardiac angiogenesis, Hypertension, 2016, vol. 67, pp. 597–605.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Hansen, A.H., Nielsen, J.J., Saltin, B., and Helsten, Y., Exercise training normalizes skeletal muscle vascular endothelial growth factor levels in patients with essential hypertension, J. Hypertens., 2010, vol. 28, pp. 1176–1185.CrossRefPubMedGoogle Scholar
  36. 36.
    Ferrara, N. and Davis-Smyth, T., The biology of vascular endothelial growth factor, Endocr. Rev., 1997, vol. 18, pp. 4–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Eklund, L., Kangas, J., and Saharinen, P., Angiopoietin-Tie signalling in the cardiovascular and lymphatic systems, Clin. Sci. (Lond.), 2017, vol. 131, pp. 87–103.CrossRefGoogle Scholar
  38. 38.
    Mrochek, A.G., Basalay, M.V., Barsukevich, V.Ch., and Gurin, A.V., Endogenous cardioprotective phenomena and their mechanisms, Kardiol. Belarus., 2014, vol. 34, no. 3, pp. 88–109.Google Scholar
  39. 39.
    Gubareva, L.I., Adaptation systems of the organism during pre-and postnatal periods of ontogenesis under the effect of anthropogenic factors of the environment, Doctorate Sci. Diss., Stavropol, 1999.Google Scholar
  40. 40.
    Kozlovskii, V.I., Humoral mechanisms of endothelium-dependent regulation of coronary blood flow, Doctorate Sci. Diss., Minsk, 2015.Google Scholar
  41. 41.
    Moncada, S., Palmer, R.M.J., and Higgs, E.A., Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev., 1991, vol. 43, pp. 109–141.PubMedGoogle Scholar
  42. 42.
    Malyshev, I.Yu. and Manukhina, E.B., Stress, adaptation, and nitric oxide, Biokhim., 1998, vol. 6, no. 7, pp. 992–1006.Google Scholar
  43. 43.
    Torreilles, J., Nitric oxide: one of the more conserved and widespread signaling molecules, Front. Biosci., 2001, vol. 6, pp. D1161–D1172.PubMedGoogle Scholar
  44. 44.
    Silva, B.R., Paula, T.D., Paulo, M., and Bendhack, L.M., Nitric oxide signaling and the cross talk with prostanoids pathways in vascular system, Med. Chem., 2016, PubMed PMID: 28031017.Google Scholar
  45. 45.
    Moncada, S., Gryglewski, R., Bunting, S., and Vane, J.R., An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation, Nature, 1976, vol. 263, pp. 663–665.CrossRefPubMedGoogle Scholar
  46. 46.
    Malakhova, Z.L., Vasina, E.Yu., Vorobyov, E.A., Nesterovich, I.I., and Vlasov, T.D., A noninvasive method to study the endothelial hyperpolarizing factor in clinic, Region. Krovoobr. Mikrotsirkul., 2013, vol. 12, no. 4, pp. 70–74.Google Scholar
  47. 47.
    Rahimtoola, S., The hibernating myocardium, Am. Heart J., 1989, vol. 117, pp. 211–221.CrossRefPubMedGoogle Scholar
  48. 48.
    Rahimtoola, S.H., Concept and evaluation of hibernating myocardium, Annu. Rev. Med., 1999, vol. 50, pp. 75–86.CrossRefPubMedGoogle Scholar
  49. 49.
    Opie, L.H., Cardiac metabolism in ischemic heart disease, Arch. Mal. Coeur. Vaiss., 1999, vol. 92, pp. 1755–1760.PubMedGoogle Scholar
  50. 50.
    Brauwald, E. and Rutherford, J.D., Reversible ischemic left ventricular dysfunction: evidence for the “hibernating myocardium”, J. Am. Coll. Cardiol., 1986, vol. 8, pp. 1467–1470.CrossRefGoogle Scholar
  51. 51.
    Pantely, G.A., Arai, A.E., Grauer, S.E., and Bristow, J.D., Metabolic aspects of hibernating myocardium, Z. Kardiol., 1995, vol. 84, pp. 101–105.PubMedGoogle Scholar
  52. 52.
    Tarasov, R.S., Vereshchagin, E.I., and Ganyukov, V.I., Methods of cardioprotection in myocardial infarction. A status quo, Kompl. Probl. Serd.-Sosud. Zabol., 2016, no. 4, pp. 44–50.Google Scholar
  53. 53.
    Hochachka, P.W., Metabolic arrest, Intensive Care Med., 1986, vol. 12, pp. 127–133.CrossRefPubMedGoogle Scholar
  54. 54.
    Yan, L., Kudej, R.K., Vatner, D.E., and Vatner, S.F., Myocardial ischemic protection in natural mammalian hibernation, Basic. Res. Cardiol., 2015, vol. 110, p.9.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Heyndrickx, G.R., Early reperfusion phenomena, Semin. Cardiothorac. Vasc. Anesth., 2006, vol. 10, pp. 236–241.CrossRefPubMedGoogle Scholar
  56. 56.
    McFalls, E.O., Hou, M., Bache, R.J., Best, A., Marx, D., Sikora, J., and Ward, H.B., Activation of p38 MAPK and increased glucose transport in chronic hibernating swine myocardium, Am. J. Physiol. Heart Circ. Physiol., 2004, vol. 287, pp. H1328–H1334.CrossRefPubMedGoogle Scholar
  57. 57.
    Chereshnev, V.A., Klinicheskaya patofiziologiya (Clinical Pathophysiology), St. Petersburg, 2012.Google Scholar
  58. 58.
    Depre, C., Kim, S.J., John, A.S., Huang, Y., Rimoldi, O.E., Pepper, J.R., Dreyfus, G.D., Gaussin, V., Pennell, D.J., Vatner, D.E., Camici, P.G., and Vatner, S.F., Program of cell survival underlying human and experimental hibernating myocardium, Circ. Res., 2004, vol. 95, pp. 433–440.CrossRefPubMedGoogle Scholar
  59. 59.
    Blagonravov, M.L., Apoptosis in cardiomyocytes as a typical reaction of the altered heart, Doctorate Sci. Diss., Moscow, 2011.Google Scholar
  60. 60.
    Masri, C. and Chandrashekhar, Y., Apoptosis: a potentially reversible, meta-stable state of the heart, Heart Fail. Rev., 2008, vol. 13, pp. 175–179.CrossRefPubMedGoogle Scholar
  61. 61.
    Kremastinos, D.T., The phenomenon of preconditioning today, Hell. J. Cardiol., 2005, vol. 46, pp. 1–4.Google Scholar
  62. 62.
    Murry, C.E., Jennings, R.B., and Reimer, K.A., Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium, Circulation, 1986, vol. 74, pp. 1124–1136.CrossRefPubMedGoogle Scholar
  63. 63.
    Xu, Q., Li, Q.G., Fan, G.R., Liu, Q.H., Mi, F.L., and Liu, B., Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats, Braz. J. Med. Biol. Res., 2017, vol. 50, p. e5286.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Shizukuda, Y., Mallet, R.T., Lee, S.C., and Downey, H.F., Hypoxic preconditioning of ischaemic canine myocardium, Cardiovasc. Res., 1992, vol. 26, pp. 534–542.CrossRefPubMedGoogle Scholar
  65. 65.
    Jennings, R.B., Sebbag, L., Schwartz, L.M., Crago, M.S., and Reimer, K.A., Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection, J. Mol. Cell Cardiol., 2001, vol. 33, pp. 1571–1588.CrossRefPubMedGoogle Scholar
  66. 66.
    Murry, C.E., Richard, V.J., Reimer, K.A., and Jennings, R.B., Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode, Circ. Res., 1990, vol. 66, pp. 913–931.CrossRefPubMedGoogle Scholar
  67. 67.
    Downey, J.M., Davis, A.M., and Cohen, M.V., Signaling pathways in ischemic preconditioning, Heart Fail. Rev., 2007, vol. 12, pp. 181–188.CrossRefPubMedGoogle Scholar
  68. 68.
    Likhvantsev, V.V., Moroz, V.V., Grebenchikov, O.A., Gorokhovatsky, Yu.I., Zarzhetsky, Yu.V., Timoshin, S.S., Levikov, D.I., and Shaibakova, V.L., Ischemic and pharmacological preconditioning, Obshch. Reanimat., 2011, vol. 7, no. 6, pp. 59–65.Google Scholar
  69. 69.
    Garlid, K.D., Dos Santos, P., Xie, Z.J., Costa, A.D., and Paucek, P., Mitochondrial potassium transport: the role of the mitochondrial ATPsensitive K+-channel in cardiac function and cardioprotection, Biochim. Biophys. Acta, 2003, vol. 1606, pp. 1–21.CrossRefPubMedGoogle Scholar
  70. 70.
    Budas, G., Costa, H.M., Ferreira, J.C., Teixeira da Silva Ferreira, A., Perales, J., Krieger, J.E., Mochly-Rosen, D., and Schechtman, D., Identification of εPKC targets during cardiac ischemic injury, Circ. J., 2012, vol. 76, pp. 1476–1485.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ping, P., Zhang, J., Zheng, Y.T., Li, R.C., Dawn, B., Tang, X.L., Takano, H., Balafanova, Z., and Bolli, R., Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits, Circ. Res., 1999, vol. 85, pp. 542–550.CrossRefPubMedGoogle Scholar
  72. 72.
    Ma, L.L., Ge, H.W., Kong, F.J., Qian, L.B., Hu, B.C., Li, Q., Xu, L., Liu, J.Q., Xu, Y.X., and Sun, R.H., Ventricular hypertrophy abrogates intralipid-induced cardioprotection by alteration of reperfusion injury salvage kinase/glycogen synthase kinase 3β signal, Shock, 2014, vol. 41, pp. 435–442.CrossRefPubMedGoogle Scholar
  73. 73.
    Juhaszova, M., Zorov, D.B., Kim, S.H., Pepe, S., Fu, Q., Fishbein, K.W., Ziman, B.D., Wang, S., Ytrehus, K., Antos, C.L., Olson, E.N., and Sollott, S.J., Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, J. Clin. Invest., 2004, vol. 113, pp. 1535–1549.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zorov, D.B., Juhaszova, M., Yaniv, Y., Nuss, H.B., Wang, S., and Sollott, S.J., Regulation and pharmacology of the mitochondrial permeability transition pore, Cardiovasc. Res., 2009, vol. 83, pp. 213–225.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kroemer, G., Dallaporta, B., and Resche-Rigon, M., The mitochondrial death/life regulator in apoptosis and necrosis, Annu Rev. Physiol., 1998, vol. 60, pp. 619–642.CrossRefPubMedGoogle Scholar
  76. 76.
    Karch, J. and Molkentin, J.D., Regulated necrotic cell death: the passive aggressive side of Bax and Bak, Circ Res., 2015, vol. 116, pp. 1800–1809.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E., Mitochondrial permeability transition and oxidative stress, FEBS Lett., 2001, vol. 495, pp. 12–15.CrossRefPubMedGoogle Scholar
  78. 78.
    Grachev, D.E., The role of the peripheral benzodiazepine receptor at early stages of apoptosis and induction of the mitochondrial nonspecific pore, Candidate Sci. Diss., Pushchino, 2009.Google Scholar
  79. 79.
    Korotkov, S.M., Konovalova, S.A., Brailovskaya, I.V., and Saris, N.E., To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria, Toxicol. In Vitro, 2016, vol. 32, pp. 320–332.CrossRefPubMedGoogle Scholar
  80. 80.
    Calmettes, G., Ribalet, B., John, S., Korge, P., Ping, P., and Weiss, J.N., Hexokinases and cardioprotection, J. Mol. Cell Cardiol., 2015, vol. 78, pp. 107–115.CrossRefPubMedGoogle Scholar
  81. 81.
    Datler, C., Pazarentzos, E., Mahul-Mellier, A.L., Chaisaklert, W., Hwang, M.S., Osborne, F., and Grimm, S., CKMT1 regulates the mitochondrial permeability transition pore in a process that provides evidence for alternative forms of the complex, J. Cell Sci., 2014, vol. 127, pp. 1816–1828.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Halestrap, A.P. and Brenner, C., The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death, Curr. Med. Chem., 2003, vol. 10, pp. 1507–1525.CrossRefPubMedGoogle Scholar
  83. 83.
    Crompton, M., The mitochondrial permeability transition pore and its role in cell death, Biochem. J., 1999, vol. 341, pp. 233–249.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Baines, C.P., The molecular composition of the mitochondrial permeability transition pore, J. Mol. Cell. Cardiol., 2009, vol. 46, pp. 850–857.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Azarashvili, T., Odinokova, I., Bakunts, A., Ternovsky, V., Krestinina, O., Tyynel, J., and Saris, N.E., Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening, Cell Calcium, 2014, vol. 55, pp. 69–77.CrossRefPubMedGoogle Scholar
  86. 86.
    Lebuffe, G., Schumacker, P.T., Shao, Z.H., Anderson, T., Iwase, H., and Vanden Hoek, T.L., ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, pp. H299–H308.CrossRefPubMedGoogle Scholar
  87. 87.
    Tang, X.L., Takano, H., Rizvi, A., Turrens, J.F., Qiu, Y., Wu, W.J., Zhang, Q., and Bolli, R., Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits, Am. J. Physiol. Heart Circ. Physiol., 2002, vol. 282, pp. H281–H291.CrossRefPubMedGoogle Scholar
  88. 88.
    Green, D.R. and Reed, J.C., Mitochondria and apoptosis, Science, 1998, vol. 281, pp. 1309–1312.CrossRefPubMedGoogle Scholar
  89. 89.
    Borisov, L.Yu., Pharmacological myocardial preconditioning in surgeries with artificial blood circulation, Candidate Sci. Diss., Moscow, 2013.Google Scholar
  90. 90.
    Shemarova, I.V. and Nesterov, V.P., Role of Ca2+ and neurotransmitters of the sympathetic nervous system in transmission of stress signal in cardiomyocytes, Zh. Evol. Biokhim. Fiziol., 2006, vol. 42, no. 2, pp. 97–104.PubMedGoogle Scholar
  91. 91.
    Karpova, E.S., Ischemic preconditioning and its cardioprotective effect in cardiorehabilitation programs for patients with ischemic heart disease after transcutaneous coronary interventions, Ross. Kardiol. Zh., 2012, no. 4, pp. 104–108.Google Scholar
  92. 92.
    Hausenloy, D.J., Ong, S.B., and Yellon, D.M., The mitochondrial permeability transition pore as a target for preconditioning and postconditioning, Basic Res. Cardiol., 2009, vol. 104, pp. 189–202.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. V. Shemarova
    • 1
  • V. P. Nesterov
    • 1
  • S. M. Korotkov
    • 1
  • Yu. A. Sylkin
    • 2
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.T.I. Vyazemsky Karadag Scientific StationNature Reserve of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations