Skip to main content
Log in

Effect of Radiative Heat Transfer and Boundary Conditions on the Airflow and Temperature Distribution Inside a Heated Tunnel Greenhouse

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The airflow and temperature distribution in a heated tunnel greenhouse in the presence of a row of tomato plants owing to heat dissipation from heating pipes is numerically studied with the use of the Fluent-CFD software. The fully turbulent airflow in the greenhouse induced by buoyancy forces is modeled by using the k–ε model. The radiative heat transfer is taken into account by using the model of discrete ordinates. Two types of boundary conditions expressing heat losses at the greenhouse cover are treated: pure convection and convection combined with thermal radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Rico-Garcia, I. L. Lopez-Cruz, G. Herrera-Ruiz, et al., “Effect of Temperature on Greenhouse Natural Ventilation under Hot Conditions: Computational Fluid Dynamics Simulations,” J. Appl. Sci. 8, 4543–4551 (2008).

    Article  ADS  Google Scholar 

  2. A. Shukla, G. N. Tiwari, and M. S. Sodha, “Energy Conservation Potential of Inner Thermal Curtain in an Even Span Greenhouse,” Trends Appl. Sci. Res. 1, 542–552 (2006).

    Article  Google Scholar 

  3. N. Kumari, G. N. Tiwari, and M. S. Sodha, “Thermal Modelling for Greenhouse Heating by Using Packed Bed,” Int. J. Agricultural Res. 1, 373–383 (2006).

    Article  Google Scholar 

  4. J. E. Fernandez and B. J. Bailey, “Measurement and Prediction of Greenhouse Ventilation Rates,” Agriculture Forest Meteorol. 58, 229–245 (1992).

    Article  ADS  Google Scholar 

  5. A. Kumar, G. N. Tiwari, S. Kumar, and M. Pandey, “Role of Greenhouse Technology in Agricultural Engineering,” Int. J. Agricultural Res. 1, 364–372 (2006).

    Article  Google Scholar 

  6. L. D. Albright, “Production Solar Greenhouse,” Energy World Agriculture 4, 213–232 (1991).

    Google Scholar 

  7. J. C. Roy, T. Boulard, and Y. Bailly, “Etude Expérimentale de la Convection Naturelle Dans une Serre Chauffée,” in Congrès Français de Thermique (SFT), Lyon (France), May 15–17, 2000 (Elsevier, Paris–Amsterdam, 2000), pp. 11–17.

    Google Scholar 

  8. F. Z. Azil, Etude des Paramètres Climatiques Sous Serres Chauffées en Présence de la Plante, These de Magistere (Batna, Algérie, 2006).

    Google Scholar 

  9. S. A. Ould Khaoua, P. E. Bournet, C. Migeon, et al., “Analysis of Greenhouse Ventilation Efficiency Based on Computational Fluid Dynamics,” Biosystems Eng. 95 (1), 83–98 (2006).

    Article  Google Scholar 

  10. P. E. Bournet and T. Boulard, “Effect of Ventilator Configuration on the Distributed Climate of Greenhouses: A Review of Experimental and CFD Studies,” Comput. Electron. Agriculture 74, 195–217 (2010).

    Article  Google Scholar 

  11. P. E. Bournet, S. A. Ould Khaoua, and T. Boulard, “Numerical Prediction of the Effect of Vent Arrangements on the Ventilation and Energy Transfers in a Multi-Span Glasshouse Using a Bi-band Radiation Model,” Biosystems Eng. 98, 224–234 (2007).

    Article  Google Scholar 

  12. S. V. Patankar, Numerical Heat Transfer and Fluid Flow (McGraw-Hill, Washington, New York, 1980).

    MATH  Google Scholar 

  13. A. Mezhrab, L. Elfarh, H. Naji, and D. Lemonnier, “Computation of Surface Radiation and Natural Convection in a Heated Horticulture Greenhouse,” Appl. Energy 87, 894–900 (2010).

    Article  Google Scholar 

  14. R. Haxaire, “Caractérisation et Modélisation des Ecoulements d’air Dans une Serre,” Thèse de Doctorat (Nice, France, 1999).

    Google Scholar 

  15. A. M. Abdel-Ghany and T. Kozai, “On the Determination of the Overall Heat Transmission Coefficient and Soil Heat Flux for a Fog Cooled, Naturally Ventilated Greenhouse: Analysis of Radiation and Convection Heat Transfer,” Energy Convers. Management 47, 2612–2628 (2006).

    Article  Google Scholar 

  16. F. P. Incropera and D. P. DeWitt Fundamentals of Heat and Mass Transfer (Wiley, New York, 1990).

    Google Scholar 

  17. G. Papadakis, A. Frangoudakis, and S. Kyritsis, “Mixed, Forced and Free Convection Heat Transfer at the Greenhouse Cover,” J. Agricultur. Eng. Res. 51, 191–205 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zeroual.

Additional information

Original Russian Text © S. Zeroual, S. Bougoul, H. Benmoussa.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 6, pp. 57–64, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeroual, S., Bougoul, S. & Benmoussa, H. Effect of Radiative Heat Transfer and Boundary Conditions on the Airflow and Temperature Distribution Inside a Heated Tunnel Greenhouse. J Appl Mech Tech Phy 59, 1008–1014 (2018). https://doi.org/10.1134/S0021894418060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418060068

Keywords

Navigation