Skip to main content
Log in

On the Impact of Flow-Diverters on the Hemodynamics of Human Cerebral Aneurysms

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The impact of flow-diverters used for cerebral aneurysm treatment on human brain hemodynamics was evaluated qualitatively and quantitatively. Numerical simulation of flow-diverter placement in cerebral vessels with aneurysms was carried out for the case history of a real patient using the commercial ANSYS 17.2 package with different (Newtonian and non-Newtonian) hydrodynamic models for blood rheology in different parts of the vessel and aneurysm, which is due to experimental data. It is shown that after flow-diverter placement, the blood flow through the artery segment containing the aneurysm neck decreases, resulting in a redistribution of the cerebral blood flow, which becomes close to the blood flow in healthy subjects. Changes in wall shear stresses in the flow-diverter region are indicative of possible aneurysm recanalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “What is an Aneurysm?” Amer. Association of Neurological Surgeons,” http://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments/Cerebral-Aneurysm.

  2. Katsuhito Yasuno, Mehmet Bakircioğlu, Siew-Kee Low, et al., “Common Variant near the Endothelin Receptor Type A (EDNRA) Gene is Associated with Intracranial Aneurysm Risk,” Proc. National Acad. Sci. 108 (49), 19707–19712 (2011); DOI: 10.1073/pnas.1117137108.

    Article  ADS  Google Scholar 

  3. G. J. Rinkel, M. Djibuti, and A. Algra, “Prevalence and Risk of Rupture of Intracranial Aneurysms: A Systematic Review,” Stroke 29, 251–256 (1998). DOI: 10.1161/01.STR.29.1.251.

    Article  Google Scholar 

  4. L. Pierot and A. K. Wakhloo, “Endovascular Treatment of Intracranial Aneurysms,” Stroke 44, 2046–2054 (2013). DOI: 10.1161/STROKEAHA.113.000733.

    Article  Google Scholar 

  5. C. Weinkauf, E. George, and W. Zhou, “Open Versus Endovascular Aneurysm Repair Trial Review,” Surgery 162 (5), 974–978 (2017); DOI: 10.1016/j.surg.2017.04.009.

    Article  Google Scholar 

  6. Y. Wang, S. Song, G. Zhou, et al., “Strategy of Endovascular Treatment for Renal Artery Aneurysms,” Clinic. Radiology 73 (4), 414.e1–414.e5 (2018); DOI: 10.1016/j.crad.2017.11.009.

    Article  Google Scholar 

  7. N. Lin, A. M. Brouillard, K. M. Keigher, et al., “Utilization of Pipeline Embolization Device for Treatment of Ruptured Intracranial Aneurysms: US Multicenter Experience,” J. Neurointerv. Surgery 7, 808–815 (2015). DOI: 10.1136/neurintsurg-2014-011320.

    Article  Google Scholar 

  8. N. Lin, A. M. Brouillard, C. Krishna, et al., “Use of Coils in Conjunction with the Pipeline Embolization Device for Treatment of Intracranial Aneurysms,” Neurosurgery 76 (2), 142–149 (2015); DOI: 10.1227/NEU.0000000000000579.

    Article  Google Scholar 

  9. H. Tanemura, F. Ishida, Y. Miura, et al., “Changes in Hemodynamics after Placing Intracranial Stents,” Neurol. Med. Chirurgica 53, 171–178 (2013). DOI: 10.2176/nmc.53.171.

    Article  Google Scholar 

  10. C. Wang, Z. Tian, J. Liu, et al., “Hemodynamic Alterations after Stent Implantation in 15 Cases of Intracranial Aneurysm,” Acta Neurochir. 158 (4), 811–819 (2016); DOI: 10.1007/s00701-015-2696-x.

    Article  Google Scholar 

  11. N. Lv, W. Cao, I. Larrabide, et al., “Hemodynamic Changes Caused by Multiple Stenting in Vertebral Artery Fusiform Aneurysms: A Patient-Specific Computational Fluid Dynamics Study,” Amer. J. Neuroradiology 39 (1), 118–122 (2018); DOI: 10.3174/ajnr.A5452.

    Article  Google Scholar 

  12. N. A. Vorobtsova, A. A. Yanchenko, A. A. Cherevko, et al., “Modelling of Cerebral Aneurysm Parameters under Stent Installation,” Russ. J. Numer. Anal. Math. Modelling 28 (5), 505–516 (2013); DOI: 10.1515/rnam-2013- 0028.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. V. Parshin, I. O. Kuianova, A. S. Yunoshev, et al., “On the Mechanics of Cerebral Aneurysms: Experimental Research and Numerical Simulation,” J. Phys.: Conf. Ser. 894, 012071 (2017); DOI: 10.1088/1742- 6596/894/1/012071.

    Google Scholar 

  14. A. K. Khe, A. P. Chupakhin, A. A. Cherevko, et al., “Viscous Dissipation Energy As a Risk Factor in Multiple Cerebral Aneurysms,” Russ. J. Numer. Anal. Math. Modelling 30 (5), 277–287 (2015); http://dodo.inm.ras.ru/biomath-archive/articlesVI/khe.pdf.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Yanchenko, A. A. Cherevko, A. P. Chupakhin, et al., “Nonstationary Hemodynamics Modelling in a Cerebral Aneurysm of a Blood Vessel,” Russ. J. Numer. Anal. Math. Modelling 29 (5), 307–317 (2014); DOI: 10.1515/rnam-2015-0025.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Dhar, M. Tremmel, J. Mocco, et al., “Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment,” Neurosurgery 63 (2), 185–197 (2008); DOI: 10.1227/01.NEU.0000316847.64140.81.

    Article  Google Scholar 

  17. A. E. Lindgren, M. I. Kurki, A. Riihinen, et al., “Type 2 Diabetes and Risk of Rupture of Saccular Intracranial Aneurysm in Eastern Finland,” Diabetes Care 36 (7), 2020–2026 (2013); DOI: 10.2337/dc12-1048.

    Article  Google Scholar 

  18. Y. Ren, G. Z. Chen, Z. Liu, et al., “Reproducibility of Image Based Computational Models of Intracranial Aneurysm: A Comparison between 3D Rotational Angiography, CT Angiography and MR Angiography,” Biomed. Eng. 15 (2016); DOI: 10.1186/s12938-016-0163-4.

    Google Scholar 

  19. P. A. Yushkevich, J. Piven, H. C. Hazlett, et al., “User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage 31, 1116–1128 (2006). DOI: 10.1016/j.neuroimage.2006.01.015.

    Article  Google Scholar 

  20. T. W. Peach, M. Ngoepe, K. Spranger, et al., “Personalizing Flow-Diverter Intervention for Cerebral Aneurysms: From Computational Hemodynamics to Biochemical Modeling,” Int. J. Numer. Meth. Biomed. Eng. 30, 1387–1407 (2014). DOI: 10.1002/cnm.2663.

    Article  Google Scholar 

  21. J. R. Cebral, F. Mut, D. Sforza, et al., “Clinical Application of Image-Based CFD for Cerebral Aneurysms,” Int. J. Numer. Methods Biomed. Eng. 27, 977–992 (2011). DOI: 10.1002/cnm.1373.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Raschi, F. Mut, R. Löhner, and J. R. Cebral, “Strategy for Modeling Flow Diverters in Cerebral Aneurysms as a Porous Medium,” Int. J. Numer. Methods Biomed. Eng. 30 (9), 909–925 (2014); DOI: 10.1002/cnm.2635.

    Article  Google Scholar 

  23. R. E. Rumbaut, “Platelet–Vessel Wall Interactions in Hemostasis and Thrombosis,” Ed. by R. E. Rumbaut, P. Thiagarajan (Morgan and Claypool Life Sci., San Rafael, 2010).

  24. O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman, Handbook of Hemorheology and Hemodynamics Biomedical and Health Research (IOS Press, Amsterdam, 2007); https://www.iospress.nl/book/handbook-of-hemorheology-and-hemodynamics/.

    Google Scholar 

  25. A. Skiadopoulos, P. Neofytou, and Ch. Housiadas, “Comparison of Blood Rheological Models in Patient Specific Cardiovascular System Simulations,” J. Hydrodynamics 29 (2), 293–304 (2017); DOI: 10.1016/S1001- 6058(16)60739-4.

    Article  ADS  Google Scholar 

  26. G. Mach, C. Sherif, U. Windberger, and A. Gruber, “A Non-Newtonian Model for Blood Flow behind a Flow Diverting Stent,” https://www.comsol.com/paper/a-non-newtonian-model-for-blood-flow-behind-a-flowdiverting-stent-40601.

  27. W. J. van Rooij and M. Sluzewski, “Opinion: Imaging Follow-up after Coiling of Intracranial Aneurysms,” Amer. J. Neuroradiology 30 (9), 1646–1648 (2009); DOI: 10.3174/ajnr.A1673.

    Article  Google Scholar 

  28. K. Orlov, D. Kislitsin, N. Strelnikov, et al., “Experience Using Pipeline Embolization Device with Shield Technology in a Patient Lacking a Full Postoperative Dual Antiplatelet Therapy Regimen,” Intervent. Neuroradiol 24 (3), 270–273 (2018); DOI: 10.1177/1591019917753824.

    Article  Google Scholar 

  29. L. Zarrinkoob, K. Ambarki, A. Wahlin, et al., “Blood Flow Distribution in Cerebral Arteries,” J. Cerebral Blood Flow Metabolism 35 (4), 648–654 (2015); DOI: 10.1038/jcbfm.2014.241.

    Article  Google Scholar 

  30. A. K. Khe, A. A. Cherevko, A. P. Chupakhin, et al., “Monitoring of Hemodynamics of Brain Vessels,” Prikl. Mekh. Tekh. Fiz. 58 (5), 7–16 (2017) [J. Appl. Mech. Tech. Phys. 58 (5), 763–770 (2017)]; DOI: 10.1134/S0021894417050017.

    MathSciNet  Google Scholar 

  31. A. Chun On Tsang, S. S. M. Lai, W. C. Chung, et al., “Blood Flow in Intracranial Aneurysms Treated with Pipeline Embolization Devices: Computational Simulation and Verification with Doppler Ultrasonography on Phantom Models,” Ultrasonography 34 (2), 98–108 (2015); DOI: 10.14366/usg.14063.

    Article  Google Scholar 

  32. L. Goubergrits, J. Schaller, U. Kertzscher, et al., “Hemodynamic Impact of Cerebral Aneurysm Endovascular Treatment Devices: Coils and Flow Diverters,” Expert Rev. Med. Devices. 11 (4), 361–373 (2014); DOI: 10.1586/17434440.2014.925395.

    Article  Google Scholar 

  33. C. S. Ogilvy, M. H. Chua, M. R. Fusco, et al., “Stratification of Recanalization for Patients with Endovascular Treatment of Intracranial Aneurysms,” Neurosurgery 76 (4), 390–395 (2015); DOI: 10.1227/NEU.0000000000000651.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Parshin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 59, No. 6, pp. 5–14, November–December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshin, D.V., Kuyanova, Y.O., Kislitsin, D.S. et al. On the Impact of Flow-Diverters on the Hemodynamics of Human Cerebral Aneurysms. J Appl Mech Tech Phy 59, 963–970 (2018). https://doi.org/10.1134/S0021894418060019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894418060019

Keywords

Navigation