Direct Numerical Simulation of a Supersonic Base Flow Behind a Circular Cylinder

  • A. M. Lipanov
  • S. A. Karskanov
  • A. I. Karpov


A supersonic flow in the near wake behind a cylinder is considered. Base pressure distributions behind a circular cylinder for various Mach numbers M are obtained and analyzed by means of direct numerical simulation based on high-order approximation algorithms. For M = 2.46, the results obtained in the present study are compared with available experimental and numerical data. Generation of turbulent kinetic energy is calculated for various Mach numbers.


supersonic flow Navier–Stokes equations high-order approximation direct numerical simulation base drag 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Garbaruk, M. Kh. Strelets, and M. L. Shur, Modeling of Turbulence in Complex Flow Computations: Tutorial (Izd. Politekh. Univ., St. Petersburg, 2012) [in Russian].Google Scholar
  2. 2.
    J. Sahu, C. J. Nietubicz, and J. L. Steger, “Navier–Stokes Computations of Projectile Base Flow with and without Mass Injection,” AIAA J. 23 (9), 1348–1355 (1985).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    L. Rollstin, “Measurement of In-Flight Base Pressure on an Artillery-Fired Projectile,” J. Spacecraft Rockets 27 (1), 5–6 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    H. F. Fasel and R. D. Sandberg, “Simulation of Supersonic Base Flows: Numerical Investigations Using DNS, LES and URANS,” Report No. DAAD190210361 (Univ. of Arizona, Tucson, 2006).CrossRefGoogle Scholar
  5. 5.
    R. D. Sandberg and H. F. Fasel, “Direct Numerical Simulations of Transitional Supersonic Base Flows,” AIAA J. 44 (4), 848–858 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    D. R. Chapman, “An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiment,” Technical Note No. 2137 (Nat. Advisory Committee for Aeronautics, Washington, 1950).Google Scholar
  7. 7.
    F. Simon, S. Deck, P. Guillen, and P. Sagaut, “Reynolds-Averaged Navier–Stokes / Large-Eddy Simulations of Supersonic Base Flow,” AIAA J. 44 (11), 2578–2590 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    J. R. Forsythe, K. A. Hoffmann, and K. D. Squires, “Detached-Eddy Simulation with Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow,” J. Fluids Eng. 124, 911–923 (2002).CrossRefGoogle Scholar
  9. 9.
    J. L. Herrin and J. C. Dutton, “Supersonic Base Flow Experiments in the NearWake of a Cylindrical Afterbody,” AIAA J. 32 (1), 77–83 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    R. D. Sandberg, “Stability Analysis of Axisymmetric Supersonic Wakes Using Various Basic States,” J. Phys.: Conf. Ser. 318, 032017 (2011).Google Scholar
  11. 11.
    R. D. Sanderberg and H. F. Fasel, “Numerical Investigation of Transitional Supersonic Axisymmetric Wakes,” J. Fluid Mech. 563, 1–41 (2006).ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    L. V. Dorodnitsyn, “Non-Reflecting Boundary Conditions and Numerical Simulation of Flow Problems,” Zh. Vychisl. Mat. Mat. Fiz. 51 (1), 152–169 (2011).MathSciNetzbMATHGoogle Scholar
  13. 13.
    S. Gottlieb and C.-W. Shu, “Total Variation Diminishing Runge–Kutta Schemes,” Math. Comput. 67 (221), 73–85 (1998).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. M. Molchanov, Mathematical Modeling of Problems of Gas Dynamics and Heat and Mass Transfer (Moscow Aviation Institute, Moscow, 2013) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Lipanov
    • 1
  • S. A. Karskanov
    • 1
  • A. I. Karpov
    • 1
  1. 1.Institute of Mechanics, Ural BranchRussian Academy of SciencesIzhevskRussia

Personalised recommendations