Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 58, Issue 6, pp 1130–1137 | Cite as

Deformation and Fracture of Zirconium Alloy at Low Temperatures

  • E. V. Karpov
  • A. Yu. Larichkin
Article
  • 12 Downloads

Abstract

This paper describes the results of an experimental study on deformation and fracture of a Zr–1% Nb zirconium alloy in the case of multiple loads at low temperatures (−80°C). Samples cut out of pipes and applied as shells of nuclear fuel elements of fuel assemblies of nuclear reactors are used to conduct a series of experiments on low-cycle stretching and compression at low temperatures and study the effect of low temperature on stress relaxation in the material under different numbers of preliminary loads.

Keywords

zirconium alloy multiple load low-cycle fatigue low temperatures stress relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yu. Zavodchikov, L. B. Zuev, and V. A. Kortekhov, Metallurgical Science Issues Devoted to Manufacture of Products of Zirconium Alloy (Nauka, Novisibirsk, 2012) [in Russian].Google Scholar
  2. 2.
    E. Yu. Rivkin, B. S. Rodchenkov, and V. M. Filatov, The Strength of Zirconium Alloys (Atomizdat, Moscow, 1974) [in Russian].Google Scholar
  3. 3.
    V. I. Pinakov, A. A. Meshcheryakov, and A. I. Makarov, “Method for Waste-Free Cutting of Thin-Walled Tubes,” RF Patent 2361702 C2, MPK B 23 D 21/00 (2006.01), No. 2007123388/02; Appl. June 21, 2007; Publ. July 20, 2009, Bull. No.20.Google Scholar
  4. 4.
    B. D. Annin and V. M. Zhigalkin, Behavior of Materials Under Complex Loading (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].Google Scholar
  5. 5.
    S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].zbMATHGoogle Scholar
  6. 6.
    T. P. Chernyaeva, A. I. Stukalov, and V. M. Gritsina, “Behavior of Oxygen in Zirconium,” in Problems of Nuclear Science and Technology, Ser: Material Science and New Materials, No. 2 (1999).Google Scholar
  7. 7.
    T. M. Poletika, S. V. Kolosov, and G. N. Narimanova, “Plastic Flow Instability at the Necking Stage in Zirconium Alloys,” Prikl. Mekh. Tekh. Fiz. 47 (3), 141–149 (2006) [J. Appl. Mech. Tech. Phys. 47 (3), 426–432 (2006)].Google Scholar
  8. 8.
    T. M. Poletika, A. P. Pshenichnikov, and S. L. Girsova, “Plastic Flow Instability and Neck Formation in Zirnonium Alloy,” Fiz. Mezomekh. 9, 99–102 (2006).Google Scholar
  9. 9.
    T. M. Poletika and A. P. Pshenichnikov, “Nonlinear Neck Formation in Zirconium Alloys,” Prikl. Mekh. Tekh. Fiz. 50 (3), 197–204 (2009) [J. Appl. Mech. Tech. Phys. 50 (3), 525–531 (2009)].Google Scholar
  10. 10.
    T. M. Poletika, G. N. Narimanov, S. V. Kolosov, et al., Plastic Flow Localization in Commercial Zirconium Alloys (Prikl. Mekh. Tekh. Fiz. 44 (2), 132–142 (2003) [J. Appl. Mech. Tech. Phys. 44 (2), 262–270 (2003)].Google Scholar
  11. 11.
    V. E. Panin, T. F. Elsukova, and Yu. F. Popkova, “The Role of Curvature of a Crystal Structure in Micropore Formation and Crack Development in Fatigue Fracture of Commercial Titanium,” Dokl. Akad. Nauk 453 (2), 155–158 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Lavrentyev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations