Skip to main content
Log in

Deformation and Fracture of Zirconium Alloy at Low Temperatures

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper describes the results of an experimental study on deformation and fracture of a Zr–1% Nb zirconium alloy in the case of multiple loads at low temperatures (−80°C). Samples cut out of pipes and applied as shells of nuclear fuel elements of fuel assemblies of nuclear reactors are used to conduct a series of experiments on low-cycle stretching and compression at low temperatures and study the effect of low temperature on stress relaxation in the material under different numbers of preliminary loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Zavodchikov, L. B. Zuev, and V. A. Kortekhov, Metallurgical Science Issues Devoted to Manufacture of Products of Zirconium Alloy (Nauka, Novisibirsk, 2012) [in Russian].

    Google Scholar 

  2. E. Yu. Rivkin, B. S. Rodchenkov, and V. M. Filatov, The Strength of Zirconium Alloys (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  3. V. I. Pinakov, A. A. Meshcheryakov, and A. I. Makarov, “Method for Waste-Free Cutting of Thin-Walled Tubes,” RF Patent 2361702 C2, MPK B 23 D 21/00 (2006.01), No. 2007123388/02; Appl. June 21, 2007; Publ. July 20, 2009, Bull. No.20.

  4. B. D. Annin and V. M. Zhigalkin, Behavior of Materials Under Complex Loading (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  5. S. N. Korobeinikov, Nonlinear Deformation of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2000) [in Russian].

    MATH  Google Scholar 

  6. T. P. Chernyaeva, A. I. Stukalov, and V. M. Gritsina, “Behavior of Oxygen in Zirconium,” in Problems of Nuclear Science and Technology, Ser: Material Science and New Materials, No. 2 (1999).

  7. T. M. Poletika, S. V. Kolosov, and G. N. Narimanova, “Plastic Flow Instability at the Necking Stage in Zirconium Alloys,” Prikl. Mekh. Tekh. Fiz. 47 (3), 141–149 (2006) [J. Appl. Mech. Tech. Phys. 47 (3), 426–432 (2006)].

    Google Scholar 

  8. T. M. Poletika, A. P. Pshenichnikov, and S. L. Girsova, “Plastic Flow Instability and Neck Formation in Zirnonium Alloy,” Fiz. Mezomekh. 9, 99–102 (2006).

    Google Scholar 

  9. T. M. Poletika and A. P. Pshenichnikov, “Nonlinear Neck Formation in Zirconium Alloys,” Prikl. Mekh. Tekh. Fiz. 50 (3), 197–204 (2009) [J. Appl. Mech. Tech. Phys. 50 (3), 525–531 (2009)].

    Google Scholar 

  10. T. M. Poletika, G. N. Narimanov, S. V. Kolosov, et al., Plastic Flow Localization in Commercial Zirconium Alloys (Prikl. Mekh. Tekh. Fiz. 44 (2), 132–142 (2003) [J. Appl. Mech. Tech. Phys. 44 (2), 262–270 (2003)].

    Google Scholar 

  11. V. E. Panin, T. F. Elsukova, and Yu. F. Popkova, “The Role of Curvature of a Crystal Structure in Micropore Formation and Crack Development in Fatigue Fracture of Commercial Titanium,” Dokl. Akad. Nauk 453 (2), 155–158 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Karpov.

Additional information

Original Russian Text © E.V. Karpov, A.Yu. Larichkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, E.V., Larichkin, A.Y. Deformation and Fracture of Zirconium Alloy at Low Temperatures. J Appl Mech Tech Phy 58, 1130–1137 (2017). https://doi.org/10.1134/S0021894417060207

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417060207

Keywords

Navigation