Journal of Applied Mechanics and Technical Physics

, Volume 58, Issue 6, pp 1083–1090 | Cite as

Temperature Distribution in the Spherical Shell of a Gauge-Alignment Spacecraft

Article

Abstract

A thermal model for the aluminized polymer shell of a gauge-alignment spacecraft was developed to calculate the steady-state temperature distribution of this shell at a fixed orientation to the Sun. A modified version of the model was used to analyze the quasistationary distribution of the shell temperature in the case of its rotation with a constant angular velocity about an axis perpendicular the direction to the Sun.

Keywords

spacecraft spherical shell equilibrium temperature quasistationary temperature distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Small Information Support Spacecrafts (Radiotekhnika, Moscow, 2010) [in Russian].Google Scholar
  2. 2.
    Rockets and Spacecrafts Designed by the Yuzhnoe Design Bureau (Yangel Yuzhnoe State Design Bureau, Dnepropetrovsk, 2000) [in Russian].Google Scholar
  3. 3.
    M. V. Tarasenko, Military Aspects of the Soviet Space Program (Nikol’, Moscow, 1992) [in Russian].Google Scholar
  4. 4.
    M. A. Komkov, Yu. Z. Bolotin, and T. V. Vasil’eva, “Determination of Structural and Technological Parameters of Pipelines Made by Winding of Polyimide Film,” Nauka Obrazovanie, No. 3, 169–178 (2013); DOI: 10.7463/0313.0541990.Google Scholar
  5. 5.
    Spacecraft Thermal Control Handbook, Vol. 1: Fundamental Technologies (Aerospace Press, El Segundo, 2002).Google Scholar
  6. 6.
    V. S. Zarubin and G. N. Kuvyrkin, “Mathematical Modeling of Thermomechanical Processes under Intense Thermal Action,” Teplofiz. Vysok. Temp. 41 (2), 300–309 (2003).Google Scholar
  7. 7.
    V. N. Zimin, “On the Simulation and Calculation of the Dynamics of Deployment of Deployable Space Structures,” Oboron. Tekh., No. 1, 123–127 (2006).Google Scholar
  8. 8.
    V. S. Avduevskii, B. M. Galitseiskii, G. A. Glebov, Yu. I. Danilov, et al., Fundamentals of Heat Transfer in Aviation and Space Engineering (Mashinstroenie, Moscow, 1975) [in Russian].Google Scholar
  9. 9.
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1992).Google Scholar
  10. 10.
    M. A. Komarova, “Temperature Conditions in the Node Housing in an Autonomous Flight to the International Space Station,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 23–30 (2012).Google Scholar
  11. 11.
    A. A. Gukalo and A. S. Gribkov, “Temperature Optimization of a Flat and Cruciform Refrigerator Emitter of a Space Nuclear Power Plant with the External Thermal Radiation Taken into Account,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 103–110 (2012).Google Scholar
  12. 12.
    “The Degree of Blackness and the Solar Radiation Absorption Coefficients of Aluminum and Alloys,” http://forca.ru/spravka/shiny-i-tokoprovody/stepen-chernoty-i-koefficienty-pogloscheniya-solnechnoy-radiaciialyuminiem-i-splavami.html.Google Scholar
  13. 13.
    V. S. Zarubin, “Temperature State of a Thin Spherical Shell,” Prikl. Mekh. Tekh. Fiz., No. 6, 169–171 (1963).Google Scholar
  14. 14.
    “Analytical Portal of the Chemical Industry,” http://www.newchemistry.ru/production.phpcat-id=52&catparent= 7&level=3.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations