Skip to main content
Log in

Temperature Distribution in the Spherical Shell of a Gauge-Alignment Spacecraft

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A thermal model for the aluminized polymer shell of a gauge-alignment spacecraft was developed to calculate the steady-state temperature distribution of this shell at a fixed orientation to the Sun. A modified version of the model was used to analyze the quasistationary distribution of the shell temperature in the case of its rotation with a constant angular velocity about an axis perpendicular the direction to the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Small Information Support Spacecrafts (Radiotekhnika, Moscow, 2010) [in Russian].

  2. Rockets and Spacecrafts Designed by the Yuzhnoe Design Bureau (Yangel Yuzhnoe State Design Bureau, Dnepropetrovsk, 2000) [in Russian].

  3. M. V. Tarasenko, Military Aspects of the Soviet Space Program (Nikol’, Moscow, 1992) [in Russian].

    Google Scholar 

  4. M. A. Komkov, Yu. Z. Bolotin, and T. V. Vasil’eva, “Determination of Structural and Technological Parameters of Pipelines Made by Winding of Polyimide Film,” Nauka Obrazovanie, No. 3, 169–178 (2013); DOI: 10.7463/0313.0541990.

    Google Scholar 

  5. Spacecraft Thermal Control Handbook, Vol. 1: Fundamental Technologies (Aerospace Press, El Segundo, 2002).

  6. V. S. Zarubin and G. N. Kuvyrkin, “Mathematical Modeling of Thermomechanical Processes under Intense Thermal Action,” Teplofiz. Vysok. Temp. 41 (2), 300–309 (2003).

    Google Scholar 

  7. V. N. Zimin, “On the Simulation and Calculation of the Dynamics of Deployment of Deployable Space Structures,” Oboron. Tekh., No. 1, 123–127 (2006).

    Google Scholar 

  8. V. S. Avduevskii, B. M. Galitseiskii, G. A. Glebov, Yu. I. Danilov, et al., Fundamentals of Heat Transfer in Aviation and Space Engineering (Mashinstroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  9. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York, 1992).

    Google Scholar 

  10. M. A. Komarova, “Temperature Conditions in the Node Housing in an Autonomous Flight to the International Space Station,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 23–30 (2012).

    Google Scholar 

  11. A. A. Gukalo and A. S. Gribkov, “Temperature Optimization of a Flat and Cruciform Refrigerator Emitter of a Space Nuclear Power Plant with the External Thermal Radiation Taken into Account,” Izv. Ross. Akad. Nauk, Energetika, No. 2, 103–110 (2012).

    Google Scholar 

  12. “The Degree of Blackness and the Solar Radiation Absorption Coefficients of Aluminum and Alloys,” http://forca.ru/spravka/shiny-i-tokoprovody/stepen-chernoty-i-koefficienty-pogloscheniya-solnechnoy-radiaciialyuminiem-i-splavami.html.

  13. V. S. Zarubin, “Temperature State of a Thin Spherical Shell,” Prikl. Mekh. Tekh. Fiz., No. 6, 169–171 (1963).

    Google Scholar 

  14. “Analytical Portal of the Chemical Industry,” http://www.newchemistry.ru/production.phpcat-id=52&catparent= 7&level=3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zarubin.

Additional information

Original Russian Text © V.S. Zarubin, V.N. Zimin, G.N. Kuvyrkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, V.S., Zimin, V.N. & Kuvyrkin, G.N. Temperature Distribution in the Spherical Shell of a Gauge-Alignment Spacecraft. J Appl Mech Tech Phy 58, 1083–1090 (2017). https://doi.org/10.1134/S0021894417060141

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894417060141

Keywords

Navigation