Journal of Applied Mechanics and Technical Physics

, Volume 58, Issue 6, pp 1063–1068 | Cite as

Initial Stage of Modeling of the Magma State in a Slot Volcano with a Finite Velocity of Diaphragm Opening

  • M. N. Davydov
  • V. K. Kedrinskii


Results of a numerical analysis of the dynamic behavior of a compressed magma melt in a slot channel with gradual opening of the diaphragm and results of simulations of its time evolution are reported. The Iordanskii–Kogarko–van Vijngaarden mathematical model of a twophase medium and a model that describes phase changes in the gas-saturated plasma behind the front of the decompression wave being formed are used. Results of numerical simulations of the flow with allowance for specific features of the pressure dynamics in the decompression wave, mass velocity components, volume fraction of the gas phase, and its viscosity are presented.


slot volcano eruption crack magma melt decompression cavitation viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Davydov, V. K. Kedrinskii, A. A. Chernov, and K. Takayama, “Generation and Evolution of Cavitation in Magma under Dynamic Unloading,” Prikl. Mekh. Tekh. Fiz. 46 (2), 71–80 (2005) [J. Appl. Mech. Tech. Phys. 46 (2), 208–215 (2005)].zbMATHGoogle Scholar
  2. 2.
    V. K. Kedrinskii, M. N. Davydov, A. A. Chernov, and K. Takayama, “Initial Stage of the Explosive Eruption of Volcanoes: Dynamics of the Magma State in Unloading Waves,” Dokl. Akad. Nauk 407 (2), 190–193 (2006).zbMATHGoogle Scholar
  3. 3.
    V. K. Kedrinskii, “Gas-Dynamic Signs of Explosive Eruptions of Volcanoes. 1. Hydrodynamic Analogs of the Pre-Explosion State of Volcanoes, Dynamics of the Three-Phase Magma State in Decompression Waves,” Prikl. Mekh. Tekh. Fiz. 49 (6), 3–12 (2008) [J. Appl. Mech. Tech. Phys. 49 (6), 891–898 (2008)].MathSciNetGoogle Scholar
  4. 4.
    V. K. Kedrinskii, “Gas-Dynamic Signs of Explosive Eruptions of Volcanoes. 2. Model of Homogeneous-Heterogeneous Nucleation, Specific Features of Destruction of the Cavitating Magma,” Prikl. Mekh. Tekh. Fiz. 50 (2), 167–177 (2009) [J. Appl. Mech. Tech. Phys. 50 (2), 309–317 (2009)].Google Scholar
  5. 5.
    H. M. Gonnermann and M. Manga, “The Fluid Mechanics Inside a Volcano,” Annual Rev. Fluid Mech. 39 (1), 321–356 (2007).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F. Dobran, “Nonequilibrium Flow in Volcanic Conduits and Application to the Eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79,” J. Volcanol. Geotherm. Res. 49 (3), 285–311 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Barmin, E. A. Vedeneeva, and O. E. Melnik, “Nonisothermal Flow of a High-Viscosity Magma in the Volcano Conduit with Allowance for Viscous Dissipation,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 21–32 (2004).Google Scholar
  8. 8.
    O. E. Melnik, A. A. Barmin, and R. S. J. Sparks, “Restless Life of Lava Domes,” Priroda, No. 3, 46–55 (2006).Google Scholar
  9. 9.
    V. K. Kedrinskii, M. N. Davydov, A. A. Pilnik, and A. A. Chernov, “Opening of a System of Cracks—On the Mechanism of the Cyclic Lateral Eruption of the St. Helens Volcano in 1980,” Prikl. Mekh. Tekh. Fiz. 57 (4), 3–15 (2016) [J. Appl. Mech. Tech. Phys. 57 (4), 577–587 (2016)].MathSciNetGoogle Scholar
  10. 10.
    A. A. Proussevitch and D. L. Sahagian, “Dynamics and Energetics of Bubble Growth in Magmas: Analytical Formulation and Numerical Modeling,” J. Geophys. Res. 103 (B8), 18223–18251 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    M. N. Davydov and V. K. Kedrinskii, “Dynamics of the Distribution of the Main Parameters of the Magma Melt in the Volcano Slot Cross Section under Instantaneous Decompression,” Prikl. Mekh. Tekh. Fiz. 57 (6), 29–32 (2016) [J. Appl. Mech. Tech. Phys. 57 (6), 985–988 (2016)].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations