Advertisement

Journal of Applied Mechanics and Technical Physics

, Volume 58, Issue 6, pp 1033–1039 | Cite as

Study of an MHD Flow of the Carreau Fluid Flow Over a Stretching Sheet with a Variable Thickness by Using an Implicit Finite Difference Scheme

  • M. Y. Malik
  • M. Khan
  • T. Salahuddin
Article

Abstract

The present analysis deals with a two-dimensional MHD flow of the Carreau fluid over a stretching sheet with a variable thickness. The governing partial differential equations are converted into an ordinary differential equation by using the similarity approach. The solution of the differential equation is calculated by using the Keller box method. The solution is studied for different values of the Hartmann number, Weissenberg number, wall thickness parameter, and power-law index. The skin friction coefficient is calculated. The present results are compared with available relevant data.

Keywords

MHD flow Carreau fluid stretching sheet Keller box method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. S. Akbar, S. Nadeem, R. U. Haq, and S. Ye, “MHD Stagnation Point Flow of Carreau Fluid Toward a Permeable Shrinking Sheet: Dual Solutions,” Ain Shams Eng. J. 5, 1233–1239 (2014).CrossRefGoogle Scholar
  2. 2.
    N. S. Akbar and S. Nadeem, “Carreau Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis,” Ain Shams Eng. J. 5, 1307–1316 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Khan and Hashim, “Boundary Layer Flow and Heat Transfer to Carreau Fluid over a Nonlinear Stretching Sheet,” AIP Adv. 5, 107203 (2015).CrossRefADSGoogle Scholar
  4. 4.
    S. Suneethal, K. Gangadhar, and N. B. Reddy, “Thermal Radiation Effect on MHD Stagnation Point Flow of a Carreau Fluid with Convective Boundary Condition,” Open Sci. J. Math. Appl. 3 (5), 121–127 (2015).Google Scholar
  5. 5.
    V. Singh and S. Agarwal, “Flow and Heat Transfer on Maxwell Fluid with Variable Viscosity and Thermal Conductivity over an Exponentially Stretching Sheet,” Amer. J. Fluid Dyn. 3 (4), 87–95 (2013).Google Scholar
  6. 6.
    S. Nadeem, R. U. Haq, N. S. Akbar, and Z. H. Khan, “MHD Three-Dimensional Casson Fluid Flow Past a Porous Linearly Stretching Sheet,” Alexandria Eng. J. 52, 577–582 (2013).CrossRefGoogle Scholar
  7. 7.
    R. D. Ene and V. Marinca, “Approximate Solutions for Steady Boundary Layer MHD Viscous Flow and Radiative Heat Transfer over an Exponentially Porous Stretching Sheet,” Appl. Math. Comput. 269, 389–401 (2015).MathSciNetGoogle Scholar
  8. 8.
    M. Mustafa and J. A. Khan, “Model for Flow of Casson Nanofluid Past a Non-Linearly Stretching Sheet Considering Magnetic Field Effects,” AIP Adv. 5, 077148 (2015).CrossRefADSGoogle Scholar
  9. 9.
    T. Hayat, M. Farooq, A. Alsaedi, and F. A. Solamy, “Impact of Cattaneo–Christov Heat Flux in the Flow over a Stretching Sheet with Variable Thickness,” AIP Adv. 5, 087159 (2015).CrossRefADSGoogle Scholar
  10. 10.
    J. A. Khan, M. Mustafa, T. Hayat, and A. Alsaedi, “Numerical Study of Cattaneo–Christov Heat Flux Model for Viscoelastic Flow due to an Exponentially Stretching Surface,” PLOS One 10, e01373639 (2015); DOI: 10.1371/journal.pone.0137363.Google Scholar
  11. 11.
    M. Govindaraju, N. V. Ganesh, and A. K. A. Hakeem, “Entropy Generation Analysis of Magneto Hydrodynamic Flow of Nanofluid over a Stretching Sheet,” J. Egyptian Math. Soc. 23, 429–434 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Salahuddinn, M. Y. Malik, A. Hussain, et al., “MHD Flow Cattaneo–Christov Heat Flux Model for Williamson Fluid over a Stretching Sheet with Variable Thickness: Using Numerical Approach,” J. Magn. Magn. Mater. 401, 991–997 (2016).CrossRefADSGoogle Scholar
  13. 13.
    K. Das, “Nanofluid Flow over a Non-Linear Permeable Stretching Sheet with Partial Slip,” J. Egyptian Math. Soc. 23, 451–456 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    G. Mahanta and S. Shaw, “3D Casson Fluid Flow Past a Porous Linearly Stretching Sheet with Convective Boundary Condition,” Alexandria Eng. J. 54, 653–659 (2015).CrossRefGoogle Scholar
  15. 15.
    I. L. Animasaun, E. A. Adebile, and A. I. Fagbade, “Casson Fluid Flow with Variable Thermo-Physical Property Along Exponentially Stretching Sheet with Suction and Exponentially Decaying Internal Heat Generation using the Homotopy Analysis Method,” J. Nigerian Math. Soc. 35 (1), 1–17 (2016); DOI: org/10.1016/j.jnnms.2015.02.001.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Y. Malik, T. Salahuddin, A. Hussain, and S. Bilal, “MHD Flow of Tangent Hyperbolic Fluid over a Stretching Cylinder: Using Keller Box Method,” J. Magn. Magn. Mater. 395, 271–276 (2015).CrossRefADSGoogle Scholar
  17. 17.
    M. G. Reddy, P. Padma, and B. Shankar, “Effects of Viscous Dissipation and Heat Source on Unsteady MHD Flow over a Stretching Sheet,” Ain Shams Eng. J. 6 (4), 1195–1201 (2015); DOI: org/10.1016/j.asej.2015.04.006.CrossRefGoogle Scholar
  18. 18.
    M. Y. Malik, I. Khan, A. Hussain, and T. Salahuddin, “Mixed Convection Flow of MHD Eyring–Powell Nanofluid over a Stretching Sheet: A Numerical Study,” AIP Adv. 5, 117118 (2015).CrossRefADSGoogle Scholar
  19. 19.
    T. Fang, J. Zhang, and Y. Shanshan, “Slip MHD Viscous Flow over a Stretching Sheet an Exact Solution,” Comm. Nonlinear Sci. 14, 3731–3737 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations