Journal of Applied Mechanics and Technical Physics

, Volume 58, Issue 6, pp 1021–1032 | Cite as

Supersonic Gas Flows in Radial Nozzles

  • S. P. Kiselev
  • V. P. Kiselev
  • V. N. Zaikovskii
Article
  • 10 Downloads

Abstract

Results of experimental investigations and numerical simulations of supersonic gas flows in radial nozzles with different nozzle widths are presented. It is demonstrated that different types of the flow are formed in the nozzle with a fixed nozzle radius and different nozzle widths: supersonic flows with oblique shock waves inducing boundary layer separation are formed in wide nozzles, and flows with a normal pseudoshock separating the supersonic and subsonic flow domains are formed in narrow nozzles (micronozzles). The pseudoshock structure is studied, and the total pressure loss in the case of the gas flow in a micronozzle is determined.

Keywords

radial nozzle supersonic flow pseudoshock boundary layer numerical simulation experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. P. Gridnev, S. S. Katsnelson, and V. P. Fomichev, Nonhomogeneous MHD Flows with the T-Layer (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  2. 2.
    P. S. Moller, “Radial Flow without Swirl between Parallel Disks Having Both Supersonic and Subsonic Region,” J. Basic Eng., Ser. D 88 (1), 153–154 (1966).Google Scholar
  3. 3.
    S. I. Kim and S. O. Park, “Oscillatory Behavior of Supersonic Impinging Jet Flow,” ShockWaves 4 (4), 259–272 (2005).ADSMATHGoogle Scholar
  4. 4.
    S. V. Klinkov, V. F. Kosarev, and V. N. Zaikovskii, “Application of Radial Supersonic Nozzles in Cold Spraying,” in Abstr. of the Int. Conf. on Methods of Aerophysical Research, Kazan, August 19–25, 2012 (Kazan. Fed. Univ., Kazan, 2012), Part 1, pp. 153–154.Google Scholar
  5. 5.
    S. P. Kiselev, V. P. Kiselev, and V. N. Zaikovskii, “Numerical Simulation of the Spaying Process of Al Particles on the Tube Surface by a Radial Nozzle,” in Abstract of the Int. Conf. on the Methods of Aerophysical Research, Novosibirsk, June 30 to July 6, 2014 (Avtograf, Novosibirsk, 2014), Part 1, pp. 109–110.Google Scholar
  6. 6.
    F. R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J. 32 (8), 1598–1605 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    S. P. Kiselev, V. P. Kiselev, and V. N. Zaikovskii, “On the Mechanism of Self-Oscillations of a Supersonic Radial Jet Exhausting into an Ambient Space,” Prikl. Mekh. Tekh. Fiz. 57 (2), 53–63 (2016) [J. Appl. Mech. Tech. Phys. 57 (2), 237–246 (2016)].Google Scholar
  8. 8.
    I. I. Lipatov, V. Yu. Liapidevskii, and A. A. Chesnokov, “Model of an Unsteady Pseudoshock in a Barotropic Gas Flow,” Dokl. Akad. Nauk 466 (5), 545–549 (2016).MathSciNetGoogle Scholar
  9. 9.
    O. V. Guskov, V. I. Kopchenov, I. I. Lipatov, et al., Processes of Supersonic Flow Deceleration in Channels (Fizmatlit, Moscow, 2008) [in Russian].Google Scholar
  10. 10.
    V. I. Penzin, Supersonic Flow Deceleration in Channels (TsAGI, Moscow, 2012) [in Russian].Google Scholar
  11. 11.
    G. N. Abramovich, Applied Gas Dynamics (Nauka, Moscow, 1976) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. P. Kiselev
    • 1
    • 2
  • V. P. Kiselev
    • 1
  • V. N. Zaikovskii
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations