Energy Spectrum of Electrons of Deep Impurity Centers in Wide-Bandgap Mesoscopic Semiconductors


The energy spectrum of deep impurity centers in wide-bandgap semiconductors (Eg > 2 eV) of mesoscopic sizes R ⪢ λD, where λD is the de Broglie wavelength, at which the spectrum of free (uncoupled) charge carriers is not quantized, but the surface significantly affects physical processes in the bulk, has been theoretically considered. It has been shown that the binding energy of an electron on an impurity center near the surface of the crystal tends to zero. In this case, the wavefunction of the electron of the impurity center located in the surface region is delocalized; i.e., the energy of the impurity electron lies in the conduction band. The possible effect of such an energy overlap on effects observed in wide-bandgap mesoscopic semiconductors is discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. P. Mikheeva and A. I. Sidorov, Tech. Phys. 49, 739 (2004).

    Article  Google Scholar 

  2. 2.

    Y. B. Band and Y. Avishai, Quantum Mechanics with Applications to Nanotechnology and Information Science (Academic, Amsterdam, The Netherlands, 2013), p. 749.

    Google Scholar 

  3. 3.

    J. Imry, Introduction to Mesoscopic Physics (Oxford Univ. Press, Oxford, 1997).

    Google Scholar 

  4. 4.

    V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (PIYaF im. B.P. Konstantinova, St.-Petersburg, 1997; North-Holland, Amsterdam, 1991).

    Google Scholar 

  5. 5.

    L. Wang, J. Jin, Ch. Mi, Zh. Hao, Y. Luo, Ch. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, Materials 10, 1233 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Ch. Jaehee, E. F. Schubert, and J. K. Kim, Laser Photon. Rev. 7, 408 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    G. Verzellesi, D. Saguatti, M. Meneghini, F. Bertazzi, M. Goano, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 114, 071101 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    C. Weisbuch, M. Piccardo, L. Martinelli, J. Iveland, J. Peretti, and J. S. Speck, Phys. Status Solidi A 212, 899 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 94, 111109 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    M. F. Schubert, S. Chhajed, J. Kyu Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    S. Chhajed, J. Cho, E. F. Schubert, J. K. Kim, D. D. Koleske, and M. H. Crawford, Phys. Status Solidi A 208, 947 (2011).

    ADS  Article  Google Scholar 

  12. 12.

    W. Liu, D. Zhao, D.-Sh. Jiang, and P. Chen, J. Phys. D: Appl. Phys. 49, 145104 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    A. M. Armstrong, M. H. Crawford, and D. D. Koleske, Appl. Phys. Express 7, 032101 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Yu. N. Demkov, V. I. Ostrovskii, Method of Zero-Radius Potentials in Atomic Physics (LGU, Leningrad, 1975) [in Russian].

    Google Scholar 

  15. 15.

    V. L. Bakhrakh and S. I. Vetchinkin, Teor. Mat. Fiz. 6, 392 (1971).

    Article  Google Scholar 

  16. 16.

    D. A. Varshalovich, V. K. Khersonskii, E. V. Orlenko, and A. N. Moskalev, Quantum Theory of Angular Momentum (Fizmatlit, Moscow, 2018; World Scientific, Singapore, 1988), Vol. 1.

    Google Scholar 

  17. 17.

    A. A. Pakhomov and I. N. Yassievich, Semiconductors 27, 270 (1993).

    ADS  Google Scholar 

  18. 18.

    M. J. Mendes, I. Tobías, A. Martí, and A. Luque, Opt. Express 19, 16208 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    S. Gromann, D. Friedrich, M. Karolak, R. Kullock, E. Krauss, M. Emmerling, G. Sangiovanni, and B. Hecht, Phys. Rev. 122, 246802 (2019).

    Google Scholar 

  20. 20.

    V. N. Abakumov, V. I. Perel, and I. N. Yassievich, Nonradiative Recombination in Semiconductors, Vol. 33 of Modern Problems in Condensed Matter Sciences (Elsevier, Amsterdam, The Netherlands, 1991).

    Google Scholar 

Download references


We are grateful to Alexander Shames (Ben-Gurion University, Israel) and Vladimir Osipov (Ioffe Institute, Russian Academy of Sciences) for stimulating discussions.

Author information



Corresponding author

Correspondence to G. G. Zegrya.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 12, pp. 807–812.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zegrya, G.G., Samosvat, D.M. & Vul’, A.Y. Energy Spectrum of Electrons of Deep Impurity Centers in Wide-Bandgap Mesoscopic Semiconductors. Jetp Lett. 112, 769–773 (2020).

Download citation