Study of a New Type of Crimped-Shape Nanotubes Cut from Bilayer Graphene with the Moiré Angle Θ = 27.8°


New quasi-one-dimensional hollow nanostructures similar to flattened nanotubes are numerically simulated. These nanostructures can be obtained by connecting the edges of nanoribbons cut out of twisted bilayer graphene with the Moiré angle Θ = 27.8°. The resulting nanotubes are non-chiral and contain chains of topological defects at the connected edges. A detailed description of their structure is given, and their energy stability is also demonstrated. The electronic characteristics of such structures and their evolution in the course of deformation are determined using ab initio methods. All nanotubes under study are metallic, except the structure with a width of 14 Å, characterized by the band gap Eg = 0.2 eV. It is shown that the electronic and elastic characteristics of such nanotubes differ significantly from those of nanoribbons forming them and of single-walled carbon nanotubes.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Iijima, Nature (London, U. K.) 354, 56 (1991).

    ADS  Article  Google Scholar 

  2. 2.

    G. Algara-Siller, A. Santana, R. Onions, M. Suyetin, J. Biskupek, E. Bichoutskaia, and U. Kaiser, Carbon 65, 80 (2013).

    Article  Google Scholar 

  3. 3.

    K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Movva, S. Huang, S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe, S. K. Banerjee, B. J. Le-Roy, and E. Tutuc, Nano Lett. 16, 5968 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    J. M. Campanera, G. Savini, I. Suarez-Martinez, and M. I. Heggie, Phys. Rev. B 75, 235449 (2007).

    ADS  Article  Google Scholar 

  5. 5.

    J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, Phys. Rev. Lett. 100, 125504 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    ADS  Article  Google Scholar 

  7. 7.

    Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London, U. K.) 459, 820 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    L. A. Chernozatonskii, V. A. Demin, and A. A. Artyukh, JETP Lett. 99, 309 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    D. G. Kvashnin, P. Vancsó, L. Yu. Antipina, G. I. Mark, L. P. Biró, P. B. Sorokin, and L. A. Chernozatonskii, Nano Res. 8, 1250 (2015).

    Article  Google Scholar 

  10. 10.

    L. A. Chernozatonskii, V. A. Demin, and Ph. Lambin, Phys. Chem. Chem. Phys. 18, 27432 (2016).

    Article  Google Scholar 

  11. 11.

    R. Petersen and T. G. Pedersen, J. Phys.: Condens. Matter 27, 225502 (2015).

    ADS  Google Scholar 

  12. 12.

    J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  13. 13.

    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    L. A. Chernozatonskii and V. A. Demin, JETP Lett. 107, 315 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    D. Zhan, L. Liu, Y. N. Xu, Z. H. Ni, J. X. Yan, C. Zhao, and Z. X. Shen, Sci. Rep. 1, 00012 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    E. G. Gal’pern, I. V. Stankevich, A. L. Chistyakov, and L. A. Chernozatonskii, Fullerene Sci. Technol. 6, 499 (1998).

    Article  Google Scholar 

  17. 17.

    M. He, J. Dong, K. Zhang, F. Ding, H. Jiang, A. Loiseau, J. Lehtonen, and E. I. Kauppinen, ACS Nano 8, 9657 (2014).

    Article  Google Scholar 

  18. 18.

    F. Schulz, P. H. Jacobse, F. F. Canova, J. van der Lit, D. Z. Gao, A. van den Hoogenband, P. Han, R. J. M. Klein Gebbink, M.-E. Moret, P. M. Joensuu, I. Swart, and P. Liljeroth, J. Phys. Chem. C 121, 2896 (2017).

    Article  Google Scholar 

  19. 19.

    V. A. Saroka, H. Abdelsalam, V. A. Demin, D. Grassano, S. A. Kuten, A. L. Pushkarchuk, and O. Pulci, Semiconductors 52, 1890 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    A. A. Artyukh and L. A. Chernozatonskii, JETP Lett. 109, 472 (2019).

    ADS  Article  Google Scholar 

  21. 21.

    I. Silvestre, A. W. Barnard, S. P. Roberts, P. L. McEuen, and R. G. Lacerda, Appl. Phys. Lett. 106, 153105 (2015).

    ADS  Article  Google Scholar 

  22. 22.

    Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Otkryt. Sist. 7, 36 (2012).

    Google Scholar 

Download references


The HPC computing resources at the Moscow State University [22] and at the Joint Supercomputer Center, Russian Academy of Sciences, were used.


This work was supported by the Russian Foundation for Basic Research (project no. 18-32-01009) and partially by the Research Council of Norway Centre of Excellence (project no. 262633, “QuSpin”).

Author information



Corresponding author

Correspondence to V. A. Demin.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 7, pp. 469–474.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Demin, V.A., Artyukh, A.A., Saroka, V.A. et al. Study of a New Type of Crimped-Shape Nanotubes Cut from Bilayer Graphene with the Moiré Angle Θ = 27.8°. Jetp Lett. 111, 397–402 (2020).

Download citation