Amplitude of Waves in the Kelvin-Wave Cascade


Development of experimental techniques to study superfluid dynamics, in particular, application of nanomechanical oscillators to drive vortex lines, enables potential observation of the Kelvin-wave cascade on quantized vortices. One of the first questions that then arises in analysis of the experimental results is the relation between the energy flux in the cascade and the amplitude of the Kelvin waves. We provide such relation based on the L’vov—Nazarenko picture of the cascade. Remarkably, the dependence of the amplitude of the waves on the energy flux is extremely weak as a power law with an exponent of 1/10.

This is a preview of subscription content, log in to check access.


  1. 1.

    R. J. Donnelly, Quantized Vortices in Helium II (Cambridge Univ. Press, Cambridge, UK, 1991).

    Google Scholar 

  2. 2.

    W. F. Vinen, Philos. Trans. R. Soc. A 366, 2925 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    C. F. Barenghi, V. S. L’vov, and P.-E. Roche, Proc. Natl. Acad. Sci. U. S. A. 111, 4683 (2014).

    ADS  Article  Google Scholar 

  4. 4.

    L. Boué, V. S. L’vov, Y. Nagar, S. V. Nazarenko, A. Pomyalov, and I. Procaccia, Phys. Rev. B 91, 144501 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    W. F. Vinen, Phys. Rev. B 64, 134520 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    M. A. Silaev, Phys. Rev. Lett. 108, 045303 (2012).

    ADS  Article  Google Scholar 

  7. 7.

    J. T. Mäkinen and V. B. Eltsov, Phys. Rev. B 97, 014527 (2018).

    ADS  Article  Google Scholar 

  8. 8.

    E. Kozik and B. Svistunov, Phys. Rev. Lett. 92, 035301 (2004).

    ADS  Article  Google Scholar 

  9. 9.

    W. F. Vinen, J. Phys.: Condens. Matter 17, S3231 (2005).

    ADS  Google Scholar 

  10. 10.

    J. Laurie, V. S. L’vov, S. Nazarenko, and O. Rudenko, Phys. Rev. B 81, 104526 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    V. S. L’vov and S. Nazarenko, JETP Lett. 91, 428 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    E. B. Sonin, Phys. Rev. B 85, 104516 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    G. Krstulovic, Phys. Rev. E 86, 055301 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    A. W. Baggaley and J. Laurie, Phys. Rev. B 89, 014504 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    A. M. Guénault, A. Guthrie, R. P. Haley, S. Kafanov, Yu. A. Pashkin, G. R. Pickett, M. Poole, R. Schanen, V. Tsepelin, D. E. Zmeev, E. Collin, O. Maillet, and R. Gazizulin, Phys. Rev. B 100, 020506(R) (2019).

    ADS  Article  Google Scholar 

  16. 16.

    C. S. Barquist, W. G. Jiang, P. Zheng, Y. Lee, and H. B. Chan, J. Low Temp. Phys. 196, 177 (2019).

    ADS  Article  Google Scholar 

  17. 17.

    T. Kamppinen and V. B. Eltsov, J. Low Temp. Phys. 196, 283 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    L. Boué, R. Dasgupta, J. Laurie, V. S. L’vov, S. V. Nazarenko, and I. Procaccia, Phys. Rev. B 84, 064516 (2011).

    ADS  Article  Google Scholar 

Download references


The work was supported by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 694248).

Author information



Corresponding author

Correspondence to V. B. Eltsov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eltsov, V.B., L’vov, V.S. Amplitude of Waves in the Kelvin-Wave Cascade. Jetp Lett. 111, 389–391 (2020).

Download citation