Skip to main content
Log in

Hall Conductivity as the Topological Invariant in the Phase Space in the Presence of Interactions and a Nonuniform Magnetic Field

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The quantum Hall conductivity in the presence of constant magnetic field may be represented as the topological TKNN invariant. Recently, the generalization of this expression has been proposed for the nonuniform magnetic field. The quantum Hall conductivity is represented as the topological invariant in phase space in terms of the Wigner transformed two-point Green’s function. This representation has been derived when the interelectron interactions were neglected. It is natural to suppose, that in the presence of interactions the Hall conductivity is still given by the same expression, in which the non-interacting Green’s function is substituted by the complete two-point Green’s function including the interaction contributions. We prove this conjecture within the framework of the 2 + 1 D tight-binding model of rather general type using the ordinary perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).

    Article  ADS  Google Scholar 

  2. E. Fradkin, Field Theories of Condensed Matter Physics (Addison Wesley, Redwood City, CA, 1991).

  3. D. Tong, arXiv:1606.06687 [hep-ph].

  4. Y. Hatsugai, J. Phys.: Condens. Matter 9, 2507 (1997).

    ADS  Google Scholar 

  5. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  6. T. Matsuyama, Prog. Theor. Phys. 77, 711 (1987).

    Article  ADS  Google Scholar 

  7. G. E. Volovik, Sov. Phys. JETP 67, 1804 (1988).

    Google Scholar 

  8. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  9. M. A. Zubkov and X. Wu, arXiv:1901.06661 [condmat. mes-hall].

  10. S. Coleman and B. Hill, Phys. Lett. B 159, 184 (1985).

    Article  ADS  Google Scholar 

  11. T. Lee, Phys. Lett. B 171, 247 (1986).

    Article  ADS  Google Scholar 

  12. C. X. Zhang and M. A. Zubkov, arXiv:1902.06545 [cond-mat.mes-hall].

  13. R. Kubo, H. Hasegawa, and N. Hashitsume, J. Phys. Soc. Jpn. 14, 56 (1959). https://doi.org/10.1143/JPSJ.14.56

    Article  ADS  Google Scholar 

  14. Q. Niu, D. J. Thouless, and Y. Wu, Phys. Rev. B 31, 3372 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

    Article  ADS  Google Scholar 

  16. B. L. Altshuler and A. G. Aronov, Electron-Electron Interaction in Disordered Systems, Ed. by A. L. Efros and M. Pollak (Elsevier, North Holland, Amsterdam, 1985).

  17. H. J. Groenewold, Physica (Amsterdam, Neth.) 12, 405 (1946).

    Article  ADS  MathSciNet  Google Scholar 

  18. J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  19. F. A. Berezin and M. A. Shubin, in Hilbert Space Operators and Operator Algebras, Colloquia Mathematica Societatis Janos Bolyai (North-Holland, Amsterdam, 1972), p. 21.

    Google Scholar 

  20. T. L. Curtright and C. K. Zachos, Asia Pacif. Phys. Newslett. 01, 37 (2012); arXiv:1104.5269.

    Article  Google Scholar 

  21. M. A. Zubkov, Annals Phys. 373, 298 (2016); arXiv:1603.03665 [cond-mat.mes-hall].

    Article  ADS  Google Scholar 

  22. I. V. Fialkovsky and M. A. Zubkov, arXiv:1905.11097.

  23. M. Suleymanov and M. A. Zubkov, Nucl. Phys. B 938, 171 (2019); arXiv:1811.08233 [hep-lat]. https://doi.org/10.1016/j.nuclphysb.2019.114674

    Article  ADS  Google Scholar 

  24. M. A. Zubkov and Z. V. Khaidukov, JETP Lett. 106, 172 (2017).

    Article  ADS  Google Scholar 

  25. Z. V. Khaidukov and M. A. Zubkov, JETP Lett. 108, 670 (2018); arXiv:1812.00970 [cond-mat.mes-hall]. https://doi.org/10.1134/S0021364018220046

    Article  ADS  Google Scholar 

  26. J. Nissinen and G. E. Volovik, arXiv:1812.03175.

Download references

Acknowledgments

The authors are grateful to I. Fialkovsky, M. Suleymanov, and Xi Wu for useful discussions. M.A. Zubkov kindly acknowledges valuable discussions with G.E. Volovik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zubkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C.X., Zubkov, M.A. Hall Conductivity as the Topological Invariant in the Phase Space in the Presence of Interactions and a Nonuniform Magnetic Field. Jetp Lett. 110, 487–494 (2019). https://doi.org/10.1134/S0021364019190020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019190020

Navigation