Skip to main content
Log in

Toroidal Configuration of a Cholesteric Liquid Crystal in Droplets with Homeotropic Anchoring

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Orientational structures formed in cholesteric droplets with homeotropic surface anchoring have been studied by means of polarization optical microscopy and computer simulations. It has been found that, when the ratio of the size of droplets to the pitch of a cholesteric helix ranges from 1.4 to 2.9, an axisymmetric toroidal cholesteric structure is formed with a topological linear defect in the form of an equatorially located surface ring. The features of the toroidal structure in cholesteric droplets and their optical textures for various observation schemes are examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor and Francis, Boca Raton, 2005).

    Book  Google Scholar 

  2. G. E. Volovik, JETP Lett. 28, 59 (1978).

    ADS  Google Scholar 

  3. M. Kleman and O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003).

    Google Scholar 

  4. H.-S. Kitzerow, Liq. Cryst. 16, 1 (1994).

    Article  Google Scholar 

  5. Y. Geng, J.-H. Jang, K.-G. Noh, J. Noh, J. P. F. Lagerwall, and S.-Y. Park, Adv. Opt. Mater. 6, 1700923 (2018).

    Article  Google Scholar 

  6. M. Humar and I. Musevic, Opt. Express 18, 26995 (2010).

    Article  ADS  Google Scholar 

  7. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, Adv. Mater. 23, 5773 (2011).

    Article  Google Scholar 

  8. G. Tkachenko and E. Brasselet, Nat. Commun. 5, 3577 (2014).

    Article  ADS  Google Scholar 

  9. J. Yoshioka, F. Ito, Y. Suzuki, H. Takahashi, H. Takizawa, and Y. Tabe, Soft Matter 10, 5869 (2014).

    Article  ADS  Google Scholar 

  10. J. Yoshioka and F. Araoka, Nat. Commun. 9, 432 (2018).

    Article  ADS  Google Scholar 

  11. T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017).

    Article  ADS  Google Scholar 

  12. F. Xu and P. P. Crooker, Phys. Rev. E 56, 6853 (1997).

    Article  ADS  Google Scholar 

  13. J. Bezic and S. Žumer, Liq. Cryst. 11, 593 (1992).

    Article  Google Scholar 

  14. Y. Zhou, E. Bukusoglu, J. A. Martínez-González, M. Rahimi, T. F. Roberts, R. Zhang, X. Wang, N. L. Abbott, and J. J. de Pablo, ACS Nano 10, 6484 (2016).

    Article  Google Scholar 

  15. Y. Bouligand and F. Livolant, J. Phys. (Paris) 45, 1899 (1984).

    Article  Google Scholar 

  16. S. Candau, P. le Roy, and F. Debeauvais, Mol. Cryst. Liq. Cryst. 23, 283 (1973).

    Article  Google Scholar 

  17. D. Seč, T. Porenta, M. Ravnik, and S. Žumer, Soft Matter 8, 11982 (2012).

    Article  ADS  Google Scholar 

  18. A. Darmon, M. Benzaquen, S. Copar, O. Dauchot, and T. Lopez-Leon, Soft Matter 12, 9280 (2016).

    Article  ADS  Google Scholar 

  19. G. Posnjak, S. Čopar, and I. Musevic, Sci. Rep. 6, 26361 (2016).

    Article  ADS  Google Scholar 

  20. G. Posnjak, S. Čopar, and I. Musevic, Nat. Commun. 8, 14594 (2017).

    Article  ADS  Google Scholar 

  21. H.-S. Kitzerow and P. P. Crooker, Liq. Cryst. 13, 31 (1993).

    Article  Google Scholar 

  22. M. N. Krakhalev, A. P. Gardymova, O. O. Prishchepa, V. Yu. Rudyak, A. V. Emelyanenko, J.-H. Liu, and V. Ya. Zyryanov, Sci. Rep. 7, 14582 (2017).

    Article  ADS  Google Scholar 

  23. D. Seč, S. Čopar, and S. Žumer, Nat. Commun. 5, 4057 (2014).

    Article  Google Scholar 

  24. J. Pierron, V. Tournier-Lasserve, P. Sopena, A. Boudet, P. Sixou, and M. Mitov, J. Phys. II (France) 5, 1635 (1995).

    Article  Google Scholar 

  25. M. N. Krakhalev, A. P. Gardymova, A. V. Emel’yanenko, Jui-Hsiang Liu, and V. Ya. Zyryanov, JETP Lett. 105, 51 (2017).

    Article  ADS  Google Scholar 

  26. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

    Book  Google Scholar 

  27. V. Yu. Rudyak, A. V. Emelyanenko, and V. A. Loiko, Phys. Rev. E 88, 052501 (2013).

    Article  ADS  Google Scholar 

  28. T. Orlova, S. J. Aßhoff, T. Yamaguchi, N. Katsonis, and E. Brasselet, Nat. Commun. 6, 8603 (2015).

    Article  Google Scholar 

  29. P. J. Ackerman and I. I. Smalyukh, Phys. Rev. X 7, 011006 (2017).

    Google Scholar 

  30. R. Ondris-Crawford, E. P. Boyko, B. G. Wagner, J. H. Erdmann, S. Zumer, and J. W. Doane, J. Appl. Phys. 69, 6380 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Krakhalev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 7, pp. 487–491.

This work was supported by the Russian Science Foundation (project no. 18-72-10036). The work was performed using the equipment of the Shared Usage Center of High-Capacity Computational Resources, Moscow State University, supported by the Ministry of Education and Science of the Russian Federation (project no. RFMEFI62117X0011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krakhalev, M.N., Rudyak, V.Y., Gardymova, A.P. et al. Toroidal Configuration of a Cholesteric Liquid Crystal in Droplets with Homeotropic Anchoring. Jetp Lett. 109, 478–481 (2019). https://doi.org/10.1134/S0021364019070075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019070075

Navigation