Skip to main content
Log in

Relation between the Shear and Dilatational Elastic Energies of Interstitial Defects in Metallic Crystals

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Molecular statics simulation of interstitial defects for four metals with a face-centered cubic lattice has been carried out. The volumes of Voronoi polyhedra are calculated for defect-forming atoms and their nearest environment. These calculations indicate that the ratio of the dilatational to shear contribution to the elastic energy for the most stable split interstitials does not exceed 0.12–0.13. The validity of the same conclusion for dumbbell interstitial defects in metallic glasses is argued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. G. Wolfer, in Comprehensive Nuclear Materials, Ed. by R. J. M. Konings (Elsevier, Amsterdam, 2012).

  2. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, New York, London, 1972).

    Google Scholar 

  3. G. Gottstein, Physical Foundations of Materials Science (Springer, Berlin, Heidelberg, 2004; BINOM. Labor. Znanii, Moscow, 2014).

    Book  Google Scholar 

  4. P. H. Dederichs, C. Lehman, H. R. Schober, A. Scholz, and R. Zeller, J. Nucl. Mater. 69–70, 176 (1978).

    Article  ADS  Google Scholar 

  5. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  6. P. Varotsos and K. Alexopoulos, Phys. Rev. B 15, 2348 (1977).

    Article  ADS  Google Scholar 

  7. P. Varotsos, W. Ludwig, and K. Alexopoulos, Phys. Rev. B 18, 2683 (1978).

    Article  ADS  Google Scholar 

  8. P. Varotsos and K. Alexopoulos, Thermodynamics of Point Defects and Their Relation with the Bulk Properties (North-Holland, Amsterdam, 1986).

    Google Scholar 

  9. P. Varotsos, J. Appl. Phys. 101, 123503 (2007).

    Article  ADS  Google Scholar 

  10. B. Zhang, X. Wu, J. Xu, and R. Zhou, J. Appl. Phys. 108, 053505 (2010).

    Article  ADS  Google Scholar 

  11. S. Zener, J. Appl. Phys. 22, 372 (1951).

    Article  ADS  Google Scholar 

  12. J. Holder and A. V. Granato, Phys. Rev. 182, 729 (1969).

    Article  ADS  Google Scholar 

  13. N. P. Kobelev and V. A. Khonik, J. Exp. Theor. Phys. 126, 340 (2018).

    Article  ADS  Google Scholar 

  14. A. V. Granato, Eur. J. Phys. B 87, 18 (2014).

    Article  ADS  Google Scholar 

  15. E. V. Safonova, Yu. P. Mitrofanov, R. A. Konchakov, A. Yu. Vinogradov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Condens. Matter 28, 215401 (2016).

    ADS  Google Scholar 

  16. E. V. Goncharova, A. S. Makarov, R. A. Konchakov, N. P. Kobelev, and V. A. Khonik, JETP Lett. 106, 35 (2017).

    Article  ADS  Google Scholar 

  17. K. Nordlund, Y. Ashkenazy, R. S. Averback, and A. V. Granato, Europhys. Lett. 71, 625 (2005).

    Article  ADS  Google Scholar 

  18. R. A. Konchakov, N. P. Kobelev, V. A. Khonik, and A. S. Makarov, Phys. Solid State 58, 215 (2016).

    Article  ADS  Google Scholar 

  19. E. V. Goncharova, R. A. Konchakov, A. S. Makarov, N. P. Kobelev, and V. A. Khonik, J. Phys.: Condens. Matter 29, 305701 (2017).

    Google Scholar 

  20. V. A. Khonik, Chin. Phys. B 26, 016401 (2017).

    Article  ADS  Google Scholar 

  21. Y. P. Mitrofanov, D. P. Wang, A. S. Makarov, W. H. Wang, and V. A. Khonik, Sci. Rep. 6, 23026 (2016).

    Article  ADS  Google Scholar 

  22. J. C. Dyre, Phys. Rev. B 75, 092102 (2007).

    Article  ADS  Google Scholar 

  23. J. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  24. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).

    Article  ADS  Google Scholar 

  25. H. W. Sheng, M. J. Kramer, A. Cadien, T. Fujita, and M. W. Chen, Phys. Rev. B 83, 134118 (2011).

    Article  ADS  Google Scholar 

  26. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).

    Article  ADS  Google Scholar 

  27. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 37, 10378 (1988).

    Article  ADS  Google Scholar 

  28. R. Meister and L. Peselnick, J. Appl. Phys. 37, 4121 (1966).

    Article  ADS  Google Scholar 

  29. V. A. Khonik and N. P. Kobelev, J. Appl. Phys. 115, 093510 (2014).

    Article  ADS  Google Scholar 

  30. G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT, Cambridge, MA, 1977).

    Google Scholar 

  31. M. A. Shtremel, Strength of Alloys. Part 1. Lattice Defects (MISIS, Moscow, 1990) [in Russian].

    Google Scholar 

  32. W. H. Wang, Prog. Mater Sci. 57, 487 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Konchakov.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 7, pp. 473–478.

This work was supported by the Ministry of Education and Science of the Russian Federation (assignment no. 3.1310.2017/4.6).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konchakov, R.A., Makarov, A.S., Afonin, G.V. et al. Relation between the Shear and Dilatational Elastic Energies of Interstitial Defects in Metallic Crystals. Jetp Lett. 109, 460–464 (2019). https://doi.org/10.1134/S0021364019070063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019070063

Navigation