Skip to main content
Log in

Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The evolution of the manifestation of levels of defects in h-BN in tunneling through graphene/h-BN/graphene heterostructures with various degrees of perfection, from completely defectless to those with several tens of levels in the band gap of h-BN, has been studied. It has been shown that the behavior of these levels is related to the motion of Dirac points and the chemical potentials of graphene layers at change in the bias and gate voltages, which is described by the electrostatic model of an ideal defectless heterostructure. The density of states of graphene in a magnetic field has been studied by its probing by the level of a single defect with a sensitivity allowing the detection of splitting of the zeroth Landau level caused by the lifting of the spin and valley degeneracy already at B ∼ 4 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 15 (11), 7329 (2015).

    Article  ADS  Google Scholar 

  2. U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 16 (12), 7982 (2016).

    Article  ADS  Google Scholar 

  3. Y. Liu, Zh. Tan, M. Kumar, and T. S. Abhilash, APL Mater. 6, 091102 (2018).

    Article  ADS  Google Scholar 

  4. A. Ranjan, F. M. Puglisi, N. Raghavan, S. J. O’Shea, K. Shubhakar, P. Pavan, A. Padovani, L. Larcher, and K. L. Pey, Appl. Phys. Lett. 112, 133505 (2018).

    Article  ADS  Google Scholar 

  5. M. T. Greenaway, E. E. Vdovin, D. Ghazaryan, A. Misra, A. Mishchenko, Y. Cao, Z. Wang, J. R. Wallbank, M. Holwill, Yu. N. Khanin, S. V. Morozov, K. Watanabe, T. Taniguchi, O. Makarovsky, T. M. Fromhold, et al., Commun. Phys. 1, 94 (2018).

    Article  Google Scholar 

  6. G. Kim, S.-S. Kim, J. Jeon, et al., Nat. Commun. 10, 230 (2019).

    Article  ADS  Google Scholar 

  7. T. T. Tran, K. Bray, M. J. Ford, M. Toth, and I. Aharonovich, Nat. Nanotechnol. 11, 37 (2016).

    Article  ADS  Google Scholar 

  8. I. Aharonovich, D. Englund, and M. Toth, Nat. Photon. 10, 631 (2016).

    Article  ADS  Google Scholar 

  9. N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatté, and G. D. Fuchs, Nano Lett. 16, 6052 (2016).

    Article  ADS  Google Scholar 

  10. M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler, and R. J. Matyi, Phys. Rev. Lett. 76, 1328 (1996).

    Article  ADS  Google Scholar 

  11. V. V. Kuznetsov, A. K. Savchenko, D. R. Mace, E. H. Linfield, and D. A. Ritchie, Phys. Rev. B 56, R15533 (1997).

    Article  ADS  Google Scholar 

  12. A. K. Geim, P. C. Main, N. La Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, and M. A. Pate, Phys. Rev. Lett. 72, 2061 (1994).

    Article  ADS  Google Scholar 

  13. P. C. Main, A. S. G. Thornton, R. J. A. Hill, S. T. Stoddart, T. Ihn, L. Eaves, K. A. Benedict, and M. Henini, Phys. Rev. Lett. 84, 729 (2000).

    Article  ADS  Google Scholar 

  14. I. Hapke-Wurst, U. Zeitler, H. Frahm, A. G. M. Jansen, R. J. Haug, and K. Pierz, Phys. Rev. B 62, 12621 (2000).

    Article  ADS  Google Scholar 

  15. Yu. N. Khanin and E. E. Vdovin, JETP Lett. 81, 267 (2005).

    Article  ADS  Google Scholar 

  16. E. E. Vdovin, Yu. N. Khanin, L. Eaves, M. Henini, and G. Hill, Phys. Rev. B 71, 195320 (2005).

    Article  ADS  Google Scholar 

  17. T. Ihn, A. Thornton, I. E. Itskevich, P. H. Beton, P. Martin, P. Moriarti, E. Muller, A. Nogaret, P. S. Main, L. Eaves, and M. Henini, Phys. Usp. 41, 122 (1998).

    Article  ADS  Google Scholar 

  18. E. E. Vdovin and Yu. N. Khanin, JETP Lett. 108, 641 (2018).

    Article  ADS  Google Scholar 

  19. E. E. Vdovin, A. Mishchenko, M. T. Greenaway, et al., Phys. Rev. Lett. 116, 186603 (2016).

    Article  ADS  Google Scholar 

  20. B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984).

    Article  ADS  Google Scholar 

  21. Yu. N. Khanin, E. E. Vdovin, A. Mishchenko, Zh. S. Tu, A. Kozikov, R. V. Gorbachev, and K. S. Novoselov, JETP Lett. 104, 334 (2016).

    Article  ADS  Google Scholar 

  22. A. Luican, G. Li, and E. Y. Andrei, Phys. Rev. B 83, 041405 (2011).

    Article  ADS  Google Scholar 

  23. J. Gaskell, L. Eaves, K. S. Novoselov, A. Mishchenko, A. K. Geim, T. M. Fromhold, and M. T. Greenaway, Appl. Phys. Lett. 107, 103105 (2015).

    Article  ADS  Google Scholar 

  24. M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).

    Article  ADS  Google Scholar 

  25. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 96, 136806 (2006).

    Article  ADS  Google Scholar 

  26. G. L. Yu, R. Jalil, B. Belle, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (9), 3282 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Vdovin.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 7, pp. 496–503.

We are grateful to P. L. Shabel’nikova for her technical assistance. This work was supported by the Russian Science Foundation (project no. 17-12-01393). M. V. Grigor’ev acknowledges the support of the Russian Foundation for Basic Research (project no. 18-02-00425).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanin, Y.N., Vdovin, E.E., Grigor’ev, M.V. et al. Tunneling in Graphene/h-BN/Graphene Heterostructures through Zero-Dimensional Levels of Defects in h-BN and Their Use as Probes to Measure the Density of States of Graphene. Jetp Lett. 109, 482–489 (2019). https://doi.org/10.1134/S0021364019070051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019070051

Navigation