Skip to main content
Log in

Wave Turbulence of a Liquid Surface in an External Tangential Electric Field

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A direct numerical simulation of the interaction of plane capillary waves on the surface of a liquid dielectric in an external tangential electric field taking into account viscous forces has been performed. It has been shown that the interaction of counterpropagating nonlinear waves can generate a direct energy cascade. In the quasistationary energy dissipation regime, probability density functions for angles of inclination of the boundary tend to a Gaussian distribution and the shape of the boundary becomes complex and chaotic. The spectrum of the surface perturbations in this regime is described by a power law k−5/2. The energy spectrum has the form k−3/2, which coincides with the Iroshnikov-Kraichnan energy spectrum and indicates that the observed wave turbulence of the liquid surface and the weak magnetohydrodynamic turbulence of interacting Alfvén waves have a related nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 4, 506 (1967).

    Google Scholar 

  2. A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).

    Article  ADS  Google Scholar 

  3. M. Yu. Brazhnikov, G. V. Kolmakov, A. A. Levchenko, and L. P. Mezhov-Deglin, JETP Lett. 73, 398 (2001).

    Article  ADS  Google Scholar 

  4. M. Yu. Brazhnikov, G. V. Kolmakov, A. A. Levchenko, and L. P. Mezhov-Deglin, Europhys. Lett. 58, 510 (2002).

    Article  ADS  Google Scholar 

  5. L. Deike, D. Fuster, M. Berhanu, and E. Falcon, Phys. Rev. Lett. 112, 234501 (2014).

    Article  ADS  Google Scholar 

  6. O. M. Phillips, J. Fluid Mech. 4, 426 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  7. V. E. Zakharov and N. N. Filonenko, Sov. Phys. Dokl. 11, 881 (1967).

    ADS  Google Scholar 

  8. S. Nazarenko and S. Lukaschuk, Annu. Rev. Condens. Matter Phys. 7, 61 (2016).

    Article  ADS  Google Scholar 

  9. J. R. Melcher, Phys. Fluids 4, 1348 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. I. Zhakin, Phys. Usp. 56, 141 (2013).

    Article  ADS  Google Scholar 

  11. D. Koulova, H. Romat, and C. L. Louste, IEEE Trans. Diel. Electr. Insul. 25, 1716 (2018).

    Article  Google Scholar 

  12. B. Tao and D. L. Guo, Comput. Math. Appl. 67, 627 (2014).

    Article  MathSciNet  Google Scholar 

  13. B. Tao, Comput. Math. Appl. 76, 799 (2018).

    Article  MathSciNet  Google Scholar 

  14. N. M. Zubarev, Phys. Rev. E 65, 055301 (2002).

    Article  ADS  Google Scholar 

  15. N. M. Zubarev, Phys. Fluids 18, 028103 (2006).

    Article  ADS  Google Scholar 

  16. T. Gao, P. A. Milewski, D. T. Papageorgiou, and J.-M. Vanden-Broeck, J. Eng. Math. 108, 107 (2018).

    Article  Google Scholar 

  17. Z. Wang, Proc. R. Soc. A 473, 20160817 (2017).

    Article  ADS  Google Scholar 

  18. S. Dorbolo and E. Falcon, Phys. Rev. E 83, 046303 (2011).

    Article  ADS  Google Scholar 

  19. F. Boyer and E. Falcon, Phys. Rev. Lett. 101, 244502 (2008).

    Article  ADS  Google Scholar 

  20. N. M. Zubarev, Phys. Lett. A 333, 284 (2004).

    Article  ADS  Google Scholar 

  21. N. M. Zubarev and O. V. Zubareva, Tech. Phys. Lett. 32, 886 (2006).

    Article  ADS  Google Scholar 

  22. N. M. Zubarev, JETP Lett. 89, 271 (2009).

    Article  ADS  Google Scholar 

  23. N. M. Zubarev and E. A. Kochurin, JETP Lett. 99, 627 (2014).

    Article  ADS  Google Scholar 

  24. E. A. Kochurin, J. Appl. Mech. Tech. Phys. 59, 79 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  25. E. A. Kochurin and N. M. Zubarev, IEEE Trans. Diel. Electr. Insul. 25, 1723 (2018).

    Article  Google Scholar 

  26. A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov, Phys. D (Amsterdam, Neth.) 321–322, 51 (2016).

    Article  Google Scholar 

  27. E. A. Kochurin and N. M. Zubarev, J. Phys.: Conf. Ser. 946, 012021 (2018).

    Google Scholar 

  28. P. Goldreich and S. Sridhar, Astrophys. J. 438, 763 (1995).

    Article  ADS  Google Scholar 

  29. P. S. Iroshnikov, Sov. Astron. 7, 566 (1963).

    ADS  MathSciNet  Google Scholar 

  30. R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).

    Article  ADS  Google Scholar 

  31. P. Goldreich and S. Sridhar, Astrophys. J. 485, 680 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kochurin.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 109, No. 5, pp. 306–311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochurin, E.A. Wave Turbulence of a Liquid Surface in an External Tangential Electric Field. Jetp Lett. 109, 303–308 (2019). https://doi.org/10.1134/S0021364019050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019050084

Navigation