Skip to main content
Log in

Resonance Tunneling Phenomena in Two-Dimensional Multilayer van der Waals Crystalline Systems

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Works, mostly experimental, concerning the most interesting features of application of the resonant tunneling spectroscopy to a new type of heterosystems, van der Waals heterostructures, have been briefly reviewed. These heterostructures appeared after the recent discovery of two-dimensional crystals, which are a new class of materials beginning with graphene. The role of the angular matching of crystal lattices of conducting graphene electrodes of van der Waals systems in carrier tunneling between them has been analyzed together with the closely related problems of satisfaction of conservation laws in tunneling transitions. Manifestations of multiparticle correlation interactions between carriers in van der Waals systems such as Wigner crystallization of electrons in a two-dimensional electron gas in a magnetic field and Bose condensation of excitons in parallel two-dimensional electron gases have been briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  2. R. K. Hayden, D. K. Maude, L. Eaves, E. C. Valadares, M. Henini, F. W. Sheard, O. H. Hughes, J. C. Portal, and L. Cury, Phys. Rev. Lett. 66, 1749 (1991).

    Article  ADS  Google Scholar 

  3. J. Smoliner, W. Demmerle, G. Berthold, E. Gornik, G. Weimann, and W. Schlapp, Phys. Rev. Lett. 63, 2116 (1989).

    Article  ADS  Google Scholar 

  4. J. Wang, P. H. Beton, N. Mori, L. Eaves, H. Buhmann, L. Mansouri, P. C. Main, T. J. Foster, and M. Henini, Phys. Rev. Lett. 73, 1146 (1994).

    Article  ADS  Google Scholar 

  5. E. E. Vdovin, A. Levin, A. Patan, L. Eaves, P. C. Main, Y. N. Khanin, Y. V. Dubrovskii, M. Henini, and G. Hill, Science (Washington, DC, U. S.) 290, 122 (2000).

    Article  ADS  Google Scholar 

  6. A. K. Geim, P. C. Main, N. la Scala, Jr., L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, and M. A. Pate, Phys. Rev. Lett. 72, 2061 (1994).

    Article  ADS  Google Scholar 

  7. P. C. Main, A. S. G. Thornton, R. J. A. Hill, S. T. Stoddart, T. Ihn, L. Eaves, K. A. Benedict, and M. Henini, Phys. Rev. Lett. 84, 729 (2000).

    Article  ADS  Google Scholar 

  8. A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  9. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science (Washington, DC, U. S.) 335, 947 (2012).

    Article  ADS  Google Scholar 

  10. A. Mishchenko, J. S. Tu, Y. Cao, et al., Nat. Nanotech. 9, 808 (2014).

    Article  ADS  Google Scholar 

  11. M. Zhu, D. Ghazaryan, S.-K. Son, C. R. Woods, A. Misra, L. He, T. Taniguchi, K. Watanabe, K. Novoselov, Y. Cao, and A. Mishchenko, 2D Mater. 4, 011013 (2017).

    Article  Google Scholar 

  12. E. E. Vdovin, A. Mishchenko, M. T. Greenaway, et al., Phys. Rev. Lett. 116, 186603 (2016).

    Article  ADS  Google Scholar 

  13. U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 15, 7329 (2015).

    Article  ADS  Google Scholar 

  14. U. Chandni, K. Watanabe, T. Taniguchi, and J. P. Eisenstein, Nano Lett. 16, 7982 (2016).

    Article  ADS  Google Scholar 

  15. R. M. Feenstra, D. Jena, and G. Gu, J. Appl. Phys. 111, 043711 (2012).

    Article  ADS  Google Scholar 

  16. R. M. Feenstra, S. C. de la Barrera, J. Li, Y. Nie, and K. Cho, J. Phys.: Condens. Matter 30, 055703 (2018).

    ADS  Google Scholar 

  17. K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Movva, Sh. Huang, S. Larentis, Ch. M. Corbet, T. Taniguchi, K. Watanabe, S. K. Banerjee, B. J. LeRoy, and E. Tutuc, Nano Lett. 16, 1989 (2016).

    Article  ADS  Google Scholar 

  18. L. Britnell, R. V. Gorbachev, A. K. Geim, L. A. Ponomarenko, A. Mishchenko, M. T. Greenaway, T. M. Fromhold, K. S. Novoselov, and L. Eaves, Nat. Commun. 4, 1794 (2013).

    Article  ADS  Google Scholar 

  19. L. Brey, Phys. Rev. Appl. 2, 014003 (2014).

    Article  ADS  Google Scholar 

  20. J. R. Wallbank, D. Ghazaryan, A. Misra, et al., Science (Washington, DC, U. S.) 353 (6299), 575 (2016).

    Article  ADS  Google Scholar 

  21. J. P. Eisenstein, T. J. Gramila, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 44, 6511 (1991).

    Article  ADS  Google Scholar 

  22. L. Pratley and U. Zülicke, Phys. Rev. B 88, 245412 (2013).

    Article  ADS  Google Scholar 

  23. K. Kim, N. Prasad, H. C. P. Movva, G. W. Burg, Y. Wang, S. Larentis, T. Taniguchi, K. Watanabe, L. F. Register, and E. Tutuc, Nano Lett. 18, 5967 (2018).

    Article  ADS  Google Scholar 

  24. M. T. Greenaway, E. E. Vdovin, A. Mishchenko, O. Makarovsky, A. Patane, J. R. Wallbank, Y. Cao, A. V. Kretinin, M. J. Zhu, S. V. Morozov, V. I. Fal’ko, K. S. Novoselov, A. K. Geim, T. M. Fromhold, and L. Eaves, Nat. Phys. 11, 1057 (2015).

    Article  Google Scholar 

  25. J. P. Eisenshtein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 69, 3804 (1992).

    Article  ADS  Google Scholar 

  26. N. Turner, J. T. Nicholls, E. H. Linfield, K. M. Brown, G. A. Jones, and D. A. Ritchie, Phys. Rev. B 54, 10614 (1996).

    Article  ADS  Google Scholar 

  27. Yu. N. Khanin, E. E. Vdovin, A. Mishchenko, Zh. S. Tu, A. Kozikov, R. V. Gorbachev, and K. S. Novoselov, JETP Lett. 104, 334 (2016).

    Article  ADS  Google Scholar 

  28. Yu. N. Khanin, E. E. Vdovin, I. A. Larkin, O. Makarovskii, Yu. A. Sklyueva, A. Mishchenko, Yu. B. Vang, A. Kozikov, R. V. Gorbachev, and K. S. Novoselov, JETP Lett. 107, 238 (2018).

    Article  ADS  Google Scholar 

  29. P. D. Ye, L. W. Engel, D. C. Tsui, R. M. Lewis, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 89, 176802 (2002).

    Article  ADS  Google Scholar 

  30. R. Cote and A. H. MacDonald, Phys. Rev. Lett. 65, 2662 (1990).

    Article  ADS  Google Scholar 

  31. Y. Hatsugai, P.-A. Bares, and X. G. Wen, Phys. Rev. Lett. 71, 424 (1993).

    Article  ADS  Google Scholar 

  32. S. He, P. M. Platzman, and B. I. Halperin, Phys. Rev. Lett. 71, 777 (1993).

    Article  ADS  Google Scholar 

  33. A. L. Efros and F. G. Pikus, Phys. Rev. B 48, 14694 (1993).

    Article  ADS  Google Scholar 

  34. V. T. Dolgopolov, Phys. Usp. 60, 731 (2017).

    Article  ADS  Google Scholar 

  35. H. P. Dahal, Y. N. Joglekar, K. S. Bedell, and A. V. Balatsky, Phys. Rev. B 74, 233405 (2006).

    Article  ADS  Google Scholar 

  36. C.-H. Zhang and Y. N. Joglekar, Phys. Rev. B 75, 245414 (2007).

    Article  ADS  Google Scholar 

  37. I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84, 5808 (2000).

    Article  ADS  Google Scholar 

  38. J. P. Eisenstein and A. H. MacDonald, Nature (London, U.K.) 432, 691 (2004).

    Article  ADS  Google Scholar 

  39. I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 87, 036803 (2001).

    Article  ADS  Google Scholar 

  40. Yu. N. Khanin, E. E. Vdovin, Yu. V. Dubrovskii, and M. Henini, JETP Lett. 84, 209 (2006).

    Article  Google Scholar 

  41. A. I. Bezuglyi, Fiz. Nizk. Temp. 31, 1153 (2005).

    Google Scholar 

  42. G. W. Burg, N. Prasad, K. Kim, T. Taniguchi, K. Watanabe, A. H. MacDonald, L. F. Register, and E. Tutuc, Phys. Rev. Lett. 120, 177702 (2018).

    Article  ADS  Google Scholar 

  43. G. W. Burg, N. Prasad, B. Fallahazad, A. Valsaraj, K. Kim, T. Taniguchi, K. Watanabe, Q. Wang, M. J. Kim, L. F. Register, and E. Tutuc, Nano Lett. 17, 3919 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Vdovin.

Additional information

Original Russian Text © E.E. Vdovin, Yu.N. Khanin, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 108, No. 9, pp. 674–686.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vdovin, E.E., Khanin, Y.N. Resonance Tunneling Phenomena in Two-Dimensional Multilayer van der Waals Crystalline Systems. Jetp Lett. 108, 641–652 (2018). https://doi.org/10.1134/S0021364018210142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018210142

Navigation