Skip to main content
Log in

Hidden Fermi Surface in KxFe2–ySe2: LDA + DMFT Study

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In this paper we provide theoretical LDA + DMFT support of recent angle-resolved photoemission spectroscopy (ARPES) observation of the so-called hidden hole-like band and corresponding hidden Fermi surface sheet near Γ-point in the K0.62Fe1.7Se2 compound. To some extent, this is a solution to the long-standing riddle of Fermi surface absence around Γ-point in the KxFe2–ySe2 class of iron chalcogenide superconductors. In accordance with the experimental data, Fermi surface was found near the Γ-point within LDA + DMFT calculations. Based on the LDA + DMFT analysis in this paper it is shown that the largest of the experimental Fermi surface sheets is actually formed by a hybrid Fe-3d ( xy, xz, yz )quasiparticle band. It is also shown that the Fermi surface is not a simple circle as DFT-LDA predicts, but has (according to the LDA + DMFT) a more complicated “propeller”-like structure due to correlations and multiorbital nature of the KxFe2–ySe2 materials. While the smallest experimental Fermi surface around Γ-point is in some sense fictitious, since it is formed by the summation of the intensities of the spectral function associated with “propeller” loupes and is not connected to any of quasiparticle bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Sadovskii, Phys. Usp. 51, 1201 (2008).

    Article  ADS  Google Scholar 

  2. K. Ishida, Y. Nakai, and H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009).

    Article  ADS  Google Scholar 

  3. D. C. Johnson, Adv. Phys. 59, 83 (2010).

    Google Scholar 

  4. P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys. 74, 124508 (2011).

    Article  ADS  Google Scholar 

  5. G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  ADS  Google Scholar 

  6. A. A. Kordyuk, Low Temp. Phys. 38, 888 (2012).

    Article  ADS  Google Scholar 

  7. M. V. Sadovskii, E. Z. Kuchinskii, and I. A. Nekrasov, J. Magn. Magn. Mater. 324, 3481 (2012).

    Article  ADS  Google Scholar 

  8. I. A. Nekrasov, N. S. Pavlov, M. V. Sadovskii, and A. A. Slobodchikov, Low Temp. Phys. 42, 891 (2016).

    Article  ADS  Google Scholar 

  9. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 105, 370 (2017).

    Article  ADS  Google Scholar 

  10. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 126, 485 (2018).

    Article  ADS  Google Scholar 

  11. M. V. Sadovskii, Phys. Usp. 59, 947 (2016).

    Article  ADS  Google Scholar 

  12. T. Qian, X.-P. Wang, W.-C. Jin, P. Zhang, P. Richard, G. Xu, X. Dai, Z. Fang, J.-G. Guo, X.-L. Chen, and H. Ding, Phys. Rev. Lett. 106, 187001 (2011).

    Article  ADS  Google Scholar 

  13. Y. Zhang, L. X. Yang, M. Xu, Z. R. Ye, F. Chen, C. He, H. C. Xu, J. Jiang, B. P. Xie, J. J. Ying, X. F. Wang, X. H. Chen, J. P. Hu, M. Matsunami, S. Kimura, and D. L. Feng, Nat. Mater. 10, 273 (2011).

    Article  ADS  Google Scholar 

  14. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D.-H. Lee, and Z.-X. Shen, Nature (London, U.K.) 515, 245 (2014).

    Article  ADS  Google Scholar 

  15. L. Zhao, D. Mou, Sh. Liu, et al., Phys. Rev. B 83, 140508(R) (2011).

  16. M. Sunagawa, K. Terashima, T. Hamada, et al., J. Phys. Soc. Jpn. 85, 073704 (2016).

    Article  ADS  Google Scholar 

  17. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 97, 15 (2013).

    Article  ADS  Google Scholar 

  18. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 117, 926 (2013).

    Article  ADS  Google Scholar 

  19. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 95, 581 (2012).

    Article  ADS  Google Scholar 

  20. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 116, 620 (2013).

    Article  ADS  Google Scholar 

  21. O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  ADS  Google Scholar 

  22. O. Gunnarsson, O. Jepsen, and O. K. Andersen, Phys. Rev. B 27, 7144 (1983).

    Article  ADS  Google Scholar 

  23. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  24. J. Guo, Sh. Jin, G. Wang, Sh. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B 82, 180520(R) (2010).

    Google Scholar 

  25. P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).

    Article  ADS  Google Scholar 

  26. K. Haule, Phys. Rev. B 75, 155113 (2007).

    Article  ADS  Google Scholar 

  27. E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    Article  ADS  Google Scholar 

  28. M. Ferrero and O. Parcollet, TRIQS: a Toolboxfor Research in Interacting Quantum Systems. http://ipht.cea.fr/triqs.

  29. M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101 (2009).

    Article  ADS  Google Scholar 

  30. L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Phys. Rev. B 84, 075145 (2011).

    Article  ADS  Google Scholar 

  31. M. Yi, D. H. Lu, R. Yu, S. C. Riggs, J.-H. Chu, B. Lv, Z. K. Liu, M. Lu, Y.-T. Cui, M. Hashimoto, S.-K. Mo, Z. Hussain, C. W. Chu, I. R. Fisher, Q. Si, and Z.-X. Shen, Phys. Rev. Lett. 110, 067003 (2013).

    Article  ADS  Google Scholar 

  32. H. J. Vidberg and J. W. Serene, J. Low Temp. Phys. 29, 179 (1977).

    Article  ADS  Google Scholar 

  33. M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  34. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Supercond. Nov. Magn. 29, 1117 (2016).

    Article  Google Scholar 

  35. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, JETP Lett. 102, 26 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Nekrasov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, I.A., Pavlov, N.S. Hidden Fermi Surface in KxFe2–ySe2: LDA + DMFT Study. Jetp Lett. 108, 623–626 (2018). https://doi.org/10.1134/S0021364018210038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018210038

Navigation