Skip to main content
Log in

Toward Defeating Diffraction and Randomness for Laser Beam Propagation in Turbulent Atmosphere

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A large distance propagation in turbulent atmosphere results in disintegration of laser beam into speckles. We find that the most intense speckle approximately preserves both the Gaussian shape and the diameter of the initial collimated beam while loosing energy during propagation. One per 1000 of atmospheric realizations produces at 7 km distance an intense speckle above 28% of the initial power. Such optimal realizations create effective extended lenses focusing the intense speckle beyond the diffraction limit of vacuum propagation. Atmospheric realizations change every several milliseconds. We propose to use intense speckles to greatly increase the time-averaged power delivery to the target plane by triggering the pulsed laser operations only at times of optimal realizations. Resulting power delivery and laser irradiance at the intense speckles well exceeds both intensity of diffraction-limited beam and intensity averaged over typical realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Strohbehn, Laser Beam Propagation in the Atmosphere, Ed. by J. W. Strohbehn (Springer, New York, 1978).

  2. V. I. Tatarskii, Wave Propagation in a Turbulent Medium, McGraw-Hill Series in Electrical Engineering (McGraw-Hill, New York, 1961).

    Google Scholar 

  3. V. I. Tatarskii, The Effects of the Turbulence Atmosphere on Wave Propagation (Israel Program Sci. Transl., Jerusalem, 1971).

    Google Scholar 

  4. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, Vol. PM53 of SPIE Monograph Ser. (Int. Soc. Opt. Eng., Philadelphia, 1998).

    Google Scholar 

  5. S. L. Lachinova and M. A. Vorontsov, J. Opt. 18, 025608 (2016).

    Article  ADS  Google Scholar 

  6. M. A. Vorontsov, G. W. Carhart, V. S. R. Gudimetla, T. Weyrauch, E. Stevenson, S. L. Lachinova, L. A. Beresnev, J. Liu, K. Rehder, and J. F. Riker, in Proceedings of the 2010 Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, Hawaii, 2010.

    Google Scholar 

  7. M. A. Vorontsov, V. R. Gudimetla, G. W. Carhart, T.Weyrauch, S. L. Lachinova, E. Polnau, J. R. L. A. Beresnev, J. Liu, and J. F. Riker, in Proceedings of the 2011 Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, Hawaii, 2011.

    Google Scholar 

  8. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  9. J. A. Fleck, J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129 (1976).

    Article  ADS  Google Scholar 

  10. M. S. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 4: Wave Propagation through Random Media (Springer, Berlin, 1989).

    Book  MATH  Google Scholar 

  11. I. M. Lifshitz, Sov. Phys. Usp. 7, 549 (1965).

    Article  ADS  Google Scholar 

  12. L. N. Lipatov, Sov. Phys. JETP 45, 216 (1977).

    ADS  Google Scholar 

  13. G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phys. Rev. E 54, 4896 (1996).

    Article  ADS  Google Scholar 

  14. M. Chertkov, Phys. Rev. E 55, 2722 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Grafke, R. Grauer, and T. Schafer, J. Phys. A: Math. Theor. 48, 333001 (2015).

    Article  Google Scholar 

  16. G. E. Falkovich, I. Kolokolov, V. Lebedev, and S. K. Turitsyn, Phys. Rev. E 63, 025601(R) (2001).

    Google Scholar 

  17. P. M. Lushnikov and N. Vladimirova, Opt. Lett. 35, 1965 (2010).

    Article  ADS  Google Scholar 

  18. Y. Chung and P. M. Lushnikov, Phys. Rev. E 84, 036602 (2011).

    Article  ADS  Google Scholar 

  19. A. E. Siegman, Lasers (Univ. Sci. Books, Mill Valley, CA, 1986).

    Google Scholar 

  20. M. A. Vorontsov, V. V. Kolosov, and A. Kohnle, J. Opt. Soc. Am. A 24, 1975 (2007).

    Article  ADS  Google Scholar 

  21. A. I. Khizhnyak, and V. B. Markov, Proc. SPIE 8238, 82380K (2012).

    Google Scholar 

  22. S. L. Lachinova, M. A. Vorontsov, G. A. Filimonov, D. A. LeMaster, and M. E. Trippel, Opt. Eng. 56, 071509 (2017).

    Article  ADS  Google Scholar 

  23. A. P. Godlevsky, Y. D. Kopytin, and V. P. Aksenov, USSR Patent No. 950016 (1981).

    Google Scholar 

  24. I. A. Vaseva, M. P. Fedoruk, A. M. Rubenchik, and S. K. Turitsyn, Sci. Rep. 6, 30697 (2016).

    Article  ADS  Google Scholar 

  25. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).

    Google Scholar 

  26. P. M. Lushnikov, S. A. Dyachenko, and N. Vladimirova, Phys. Rev. A 88, 013845 (2013).

    Article  ADS  Google Scholar 

  27. P. M. Lushnikov and N. Vladimirova, Opt. Lett. 39, 3429 (2014).

    Article  ADS  Google Scholar 

  28. P. M. Lushnikov and N. Vladimirova, Opt. Express 23, 31120 (2015).

    Article  ADS  Google Scholar 

  29. T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, Opt. Lett. 41, 840 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Lushnikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushnikov, P.M., Vladimirova, N. Toward Defeating Diffraction and Randomness for Laser Beam Propagation in Turbulent Atmosphere. Jetp Lett. 108, 571–576 (2018). https://doi.org/10.1134/S0021364018210026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018210026

Navigation