JETP Letters

, Volume 107, Issue 12, pp 794–797 | Cite as

Fractional Quantum Hall Effect in SiGe/Si/SiGe Quantum Wells in Weak Quantizing Magnetic Fields

  • V. T. Dolgopolov
  • M. Yu. Melnikov
  • A. A. Shashkin
  • S.-H. Huang
  • C. W. Liu
  • S. V. Kravchenko
Condensed Matter


We have experimentally studied the fractional quantum Hall effect in SiGe/Si/SiGe quantum wells in relatively weak magnetic fields, where the Coulomb interaction between electrons exceeds the cyclotron splitting by a factor of a few XX. Minima of the longitudinal resistance have been observed corresponding to the quantum Hall effect of composite fermions with quantum numbers p = 1, 2, 3, and 4. Minima with p = 3 disappear in magnetic fields below 7 T, which may be a consequence of the intersection or even merging of the quantum levels of the composite fermions with different orientations of the pseudo-spin, i.e., those belonging to different valleys. We have also observed minima of the longitudinal resistance at filling factors ν = 4/5 and 4/11, which may be due to the formation of the second generation of the composite fermions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    T. Chakraborty and P. Pietilainen, The Fractional Quantum Hall Effect (Springer, Berlin, New York, 1988).CrossRefGoogle Scholar
  3. 3.
    The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer, New York, 1990).Google Scholar
  4. 4.
    Perspectives in Quantum Hall Effects, Ed. by Sankar Das Sarma and A. Pinczuk (Wiley, New York, 1997).Google Scholar
  5. 5.
    S. M. Girvin, The Quantum Hall Effect: Novel Excitations and Broken Symmetries, Vol. 69 of Topological Aspects of Low Dimensional Systems, Ed. by A. Comtet, T. Jolicoeur, S. Ouvry, and F. David (Springer, Berlin, Heidelberg, 2000).Google Scholar
  6. 6.
    K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. 47, 7312 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    J. H. Smet, D. Weiss, K. von Klitzing, P. T. Coleridge, Z. W. Wasilewski, R. Bergmann, H. Schweizer, and A. Scherer, Phys. Rev. 56, 3598 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    J. H. Smet, S. Jobst, K. von Klitzing, D. Weiss, W. Wegscheider, and V. Umansky, Phys. Rev. Lett. 83, 2620 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. Smet, D. Weiss, R. H. Blick, G. Lutjering, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, and G. Weimann, Phys. Rev. Lett. 77, 2272 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    K. Lai, W. Pan, D. C. Tsui, S. Lyon, M. Muhlberger, and F. Schaffler, Phys. Rev. Lett. 93, 156805 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    T. M. Lu, D. C. Tsui, C.-H. Lee, and C. W. Liu, Appl. Phys. Lett. 94, 182102 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    K. Park and J. K. Jain, Solid State Commun. 119, 291 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, C. W. Liu, and S. V. Kravchenko, Appl. Phys. Lett. 106, 092102 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    W. Pan, K. W. Baldwin, K. W. West, L. N. Pfeiffer, and D. C. Tsui, Phys. Rev. 91, 041301 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 75, 3926 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    R. R. Du, A. S. Yeh, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. 55, R7351 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    I. V. Kukushkin, K. von Klitzing, and K. Eberl, Phys. Rev. Lett. 82, 3665 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, Phys. Rev. Lett. 112, 186402 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Shashkin, V. T. Dolgopolov, J. W. Clark, V. R. Shaginyan, M. V. Zverev, and V. A. Khodel, JETP Lett. 102, 36 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    V. S. Khrapai, A. A. Shashkin, and V. T. Dolgopolov, Phys. Rev. 67, 113305 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. T. Dolgopolov
    • 1
  • M. Yu. Melnikov
    • 1
  • A. A. Shashkin
    • 1
  • S.-H. Huang
    • 2
    • 3
  • C. W. Liu
    • 2
    • 3
  • S. V. Kravchenko
    • 4
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Department of Electrical Engineering and Graduate Institute of Electronics EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.National Nano Device LaboratoriesHsinchuTaiwan
  4. 4.Physics DepartmentNortheastern UniversityBostonUSA

Personalised recommendations