Advertisement

JETP Letters

, Volume 107, Issue 10, pp 651–654 | Cite as

Dirac Points, Spinons, and Spin Liquid in Twisted Bilayer Graphene

  • V. Yu. Irkhin
  • Yu. N. Skryabin
Condensed Matter

Abstract

Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo- Herrero, Nature (London, U.K.. 556, 80 (2018); arXiv:1802.00553.ADSCrossRefGoogle Scholar
  2. 2.
    P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez- Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Phys. Rev. Lett. 117, 116804 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    M. Yankowitz, J. Jung, E. Laksono, N. Leconte, B. L. Chittari, K. Watanabe, T. Taniguchi, Sh. Adam, D. Graf, and C. R. Dean, arXiv:1707.09054.Google Scholar
  5. 5.
    M. Goerbig and G. Montambaux, in Dirac Matter, Ed. by B. Duplantier, V. Rivasseau, and J. N. Fuchs, Vol. 71 of Progress in Mathematical Physics (Birkhäuser, Basel, 2017), p. 25; arXiv:1410.4098.Google Scholar
  6. 6.
    Y. Kim, P. Herlinger, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, and J. H. Smet, Nano Lett. 16, 5053 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. Yu. Irkhin and Yu. N. Skryabin, JETP Lett. 106, 167 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    C. Xu and L. Balents, arXiv:1803.08057.Google Scholar
  9. 9.
    T. Senthil, Phys. Rev.. 78, 035103 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    S. Sachdev, Rapporteur talk at the 24th Solvay Conference on Physics, Brussels, Oct. 2008; arXiv:0901.4103.Google Scholar
  11. 11.
    V. Yu. Irkhin, Phys. Usp. 60, 747 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev.. 69, 035111 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    S.-S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    S. Jafari, Eur. Phys. J.. 68, 537 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    D. H. Kim and P. A. Lee, Ann. Phys. 272, 130 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    L. B. Ioffe and A. I. Larkin, Phys. Rev.. 39, 8988 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    G. E. Volovik, Phys. Usp. 61, 89 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phys. Rev.. 73, 174501 (2006).CrossRefGoogle Scholar
  19. 19.
    G. E. Volovik, Lect. Notes Phys. 718, 31 (2007); arXiv:cond-mat/0601372.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  21. 21.
    G. E. Volovik, JETP Lett. 107, 516 (2018); arXiv:1803.08799.ADSCrossRefGoogle Scholar
  22. 22.
    S. Sachdev, M. A. Metlitski, and M. Punk, J. Phys.: Condens. Matte. 24, 294205 (2012).Google Scholar
  23. 23.
    V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Mikheev Institute of Metal PhysicsRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations