Dirac points, spinons and spin liquid in twisted bilayer graphene

Article
  • 16 Downloads

Abstract

Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80 (2018); arXiv:1802.00553.ADSCrossRefGoogle Scholar
  2. 2.
    P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Phys. Rev. Lett. 117, 116804 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    M. Yankowitz, J. Jung, E. Laksono, N. Leconte, B. L. Chittari, K. Watanabe, T. Taniguchi, Sh. Adam, D. Graf, and C. R. Dean, arXiv:1707.09054.Google Scholar
  5. 5.
    M. Goerbig and G. Montambaux, Dirac Fermions in Condensed Matter and beyond, ed. by B. Duplantier, V. Rivasseau, J. N. Fuchs, Dirac Matter. Progress in Mathematical Physics, Birkhäuser, Basel (2017), v. 71, p. 25; arXiv:1410.4098.Google Scholar
  6. 6.
    Y. Kim, P. Herlinger, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, and J. H. Smet, Nano Lett. 16, 5053 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. Yu. Irkhin and Yu. N. Skryabin, JETP Lett. 106, 167 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    C. Xu and L. Balents, arXiv:1803.08057.Google Scholar
  9. 9.
    T. Senthil, Phys. Rev. B 78, 035103 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    S. Sachdev, Exotic Phases and Quantum Phase Transitions: Model Systems and Experiments. Rapporteur talk at the 24th Solvay Conference on Physics, Brussels, Oct. 2008; arXiv:0901.4103.Google Scholar
  11. 11.
    V. Yu. Irkhin, Phys. Usp. 60, 74 (2017).CrossRefGoogle Scholar
  12. 12.
    T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004).ADSCrossRefGoogle Scholar
  13. 13.
    S.-S. Lee and P.A. Lee, Phys. Rev. Lett. 95, 036403 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    S. Jafari, Eur. Phys. J. B 68, 537 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    D. H. Kim and P. A. Lee, Ann. Phys. 272, 130 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    G. E. Volovik, Phys. Usp. 61, 89 (2018).ADSCrossRefGoogle Scholar
  18. 18.
    K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phys. Rev. B 73, 174501 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Volovik, Lect. Notes Phys. 718, 31 (2007); arXiv:cond-mat 0601372.ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    V. A. Khodel and V. R. Shaginyan, JETP Lett. 51, 553 (1990).ADSGoogle Scholar
  21. 21.
    G. E. Volovik, JETP Lett. (online first) 107 (2018), arXiv:1803.08799.Google Scholar
  22. 22.
    S. Sachdev, M. A. Metlitski, and M. Punk, J. Phys.: Condens. Matter 24, 294205 (2012).Google Scholar
  23. 23.
    V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.M.N.Mikheev Institute of Metal PhysicsEkaterinburgRussia

Personalised recommendations