Skip to main content
Log in

Self-Focusing of a Light Beam in a Medium with Relativistic Nonlinearity: New Analytical Solutions

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In contrast to the existing theories of the relativistic self-focusing of a light beam in a plasma, the problem of a steady self-focusing light beam with a given input Gaussian radial intensity distribution has been analytically solved approximately with the use of a renormalization group approach. Depending on the parameters of the plasma and laser beam, solutions describing its longitudinal–radial waveguide structure have been obtained. These solutions demonstrate three characteristic types of relativistic self-focusing: (i) self-focusing on an axis, (ii) self-focusing in the form of a tubular channel, and (iii) self-trapping distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Askar’yan, Sov. Phys. JETP 15, 1088 (1962).

    Google Scholar 

  2. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokholov, Sov. Phys. Usp. 10, 609 (1967).

    Article  ADS  Google Scholar 

  3. V. N. Lugovoi and A. M. Prokhorov, Sov. Phys. Usp. 16, 658 (1973).

    Article  ADS  Google Scholar 

  4. S. N. Vlasov and V. I. Talanov, Self-Focusing of Waves (Inst. Prikl. Fiz. RAN, Nizh. Novgorod, 1997) [in Russian].

    Google Scholar 

  5. L. Bergé, Phys. Rep. 303, 259 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Vol. 139 of Springer Series on Applied Mathematical Sciences (Springer, New York, Berlin, Heidelberg, 1999).

    MATH  Google Scholar 

  7. Laser Physics at Relativistic Intensities, Ed. by A. V. Borovsky, A. L. Galkin, O. B. Shiryaev, and T. Auguste, Vol. 34 of Springer Series on Atomic, Optical, and Plasma Physics (Springer, New York, 2009).

    Google Scholar 

  8. Self-Focusing: Past and Present, Fundamentals and Prospects, Ed. by R. W. Boyd, S. G. Lukishova, and Y. R. Shen, Vol. 114 of Springer Series: Topics in Applied Physics (Springer, New York, 2009).

    Google Scholar 

  9. A. B. Borisov, A. V. Borovskii, V. V. Korobkin, A. M. Prokhorov, Ch. K. Rouds, and O. B. Shiryaev, Sov. Phys. JETP 74, 604 (1992).

    Google Scholar 

  10. A. B. Borisov, A. V. Borovskiy, O. B. Shiryaev, V. V. Korobkin, A. M. Prokhorov, J. C. Solem, T. S. Luk, K. Boyer, and C. K. Rhodes, Phys. Rev. A 45, 5830 (1992).

    Article  ADS  Google Scholar 

  11. B. Hafizi, F. Ting, P. Sprangle, and R. F. Habbard, Phys. Rev. E 62, 4120 (2000).

    Article  ADS  Google Scholar 

  12. A. Komashko, S. Musher, A. Rubenchik, S. Turitsyn, and M. Feit, JETP Lett. 62, 860 (1995).

    ADS  Google Scholar 

  13. M. D. Feit, A. M. Komashko, and A. M. Rubenchik, Phys. D (Amsterdam, Neth.) 152–153, 705 (2001).

    Article  Google Scholar 

  14. M. D. Feit, A. M. Komashko, S. L. Musher, A. M. Rubenchik, and S. K. Turitsyn, Phys. Rev. E 57, 7122 (1998).

    Article  ADS  Google Scholar 

  15. G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, Phys. Fluids 30, 526 (1987).

    Article  ADS  Google Scholar 

  16. F. Cattani, A. Kim, D. Anderson, and M. Lisak, Phys. Rev. E 64, 016412 (2001).

    Article  ADS  Google Scholar 

  17. N. Naseri, W. Rozmus, and D. Pesme, Phys. Plasmas 23, 113101 (2016).

    Article  ADS  Google Scholar 

  18. N. Naseri, S. G. Bochkarev, and W. Rozmus, Phys. Plasmas 17, 033107 (2010).

    Article  ADS  Google Scholar 

  19. V. F. Kovalev, V. Yu. Bychenkov, and V. T. Tikhonchuk, Phys. Rev. A 61, 033809 (2000).

    Article  ADS  Google Scholar 

  20. V. F. Kovalev, K. I. Popov, and V. Yu. Bychenkov, J. Exp. Theor. Phys. 114, 25 (2012).

    Article  ADS  Google Scholar 

  21. D. V. Shirkov and V. F. Kovalev, Phys. Usp. 51, 815 (2008).

    Article  ADS  Google Scholar 

  22. S. D. Patil, M. V. Takale, V. J. Fulari, D. N. Gupta, and H. Suk, Appl. Phys. B: Laser Opt. 111, 1 (2013).

    Article  ADS  Google Scholar 

  23. S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett. 69, 1383 (1992).

    Article  ADS  Google Scholar 

  24. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  25. P. McKenna, D. C. Carroll, O. Lundh, et al., Laser Part. Beams 26, 591 (2008).

    Article  ADS  Google Scholar 

  26. A. B. Borisov, X. Shi, V. B. Karpov, V. V. Korobkin, J. C. Solem, O. B. Shiryaev, A. McPherson, K. Boyer, and C. K. Rhodes, J. Opt. Soc. Am. B 11, 1941 (1994).

    Article  ADS  Google Scholar 

  27. S. Sen, M. A. Varshney, and D. Varshney, ISRN Opt. 642617 (2013). http://dx.doi.org/ doi 10.1155/2013/642617

    Google Scholar 

  28. A. B. Borisov, J. W. Longworth, K. Boyer, and C. K. Rhodes, Proc. Natl. Acad. Sci. U.S.A., Phys. 95, 7854 (1998).

    Article  ADS  Google Scholar 

  29. L. M. Chen, H. Kotaki, K. Nakajima, et al., Phys. Plasma 14, 040703 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Kovalev.

Additional information

Original Russian Text © V.F. Kovalev, V.Yu. Bychenkov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 8, pp. 484–490.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, V.F., Bychenkov, V.Y. Self-Focusing of a Light Beam in a Medium with Relativistic Nonlinearity: New Analytical Solutions. Jetp Lett. 107, 458–463 (2018). https://doi.org/10.1134/S0021364018080118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018080118

Navigation