Skip to main content
Log in

Enhancement of the Local Electromagnetic Field over Planar “Particles” Formed on the Surface of a Polar Crystal

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Small “particles” of an open surface were formed on a SiC polar crystal with openings in the opaque metal mask covering the sample. The dimensions of the holes were about surface phonon polariton wavelength. Such a sample was irradiated with an electromagnetic wave ( λ = 10.68μm) at a frequency close to the lattice resonance of SiC. A significant enhancement in the field amplitude of surface phonon polariton waves was detected over such “particles” compared to the amplitude over an infinite open surface of SiC. Such a phenomenon, observed by us in the IR band, is similar to plasmon resonance on small metal particles in the visible band, but the lateral resolution of the ASNOM used (no worse than 30 nm at 10 μm) makes the obtained field distribution more detailed. The maps of the local field amplitude and phase obtained on SiC surface with ASNOM are in a good quantitative agreement with simulations using the Green’s function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006; Fizmatlit, Moscow, 2009).

    Google Scholar 

  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, Heidelberg, 1988).

    Book  Google Scholar 

  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  4. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131 (2005).

    Article  ADS  Google Scholar 

  5. K. Huang, Proc. R. Soc. London, Ser. A 208, 352 (1951).

    Article  ADS  Google Scholar 

  6. D. L. Mills and E. Burstein, Rep. Prog. Phys. 37, 817 (1974).

    Article  ADS  Google Scholar 

  7. P. Drude, Ann. Phys. 306, 566 (1900).

    Article  Google Scholar 

  8. L. Novotny and N. van Hulst, Nat. Photon. 5, 83 (2011).

    Article  ADS  Google Scholar 

  9. V. Amendola, R. Pilot, M. Frasconi, O. M. Maragó, and M. A. Iatí, J. Phys.: Condens. Matter 29, 203002 (2017).

    ADS  Google Scholar 

  10. B. L. Darby, B. Auguié, M. Meyer, A. E. Pantoja, and E. C. le Ru, Nat. Photon. 10, 40 (2015).

    Article  ADS  Google Scholar 

  11. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett. 96, 113002 (2006).

    Article  ADS  Google Scholar 

  12. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).

    Article  ADS  Google Scholar 

  13. Y. Sasaki, Y. Nishina, M. Sato, and K. Okamura, Phys. Rev. B 40, 1762 (1989).

    Article  ADS  Google Scholar 

  14. R. Geick, C. H. Perry, and G. Rupprecht, Phys. Rev. 146, 543 (1966).

    Article  ADS  Google Scholar 

  15. D. Lockwood, G. Yu, and N. Rowell, Solid State Commun. 136, 404 (2005).

    Article  ADS  Google Scholar 

  16. F. Zehnhausern, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).

    Article  ADS  Google Scholar 

  17. D. V. Kazantsev, E. V. Kuznetsov, S. V. Timofeev, A. V. Shelaev, and E. A. Kazantseva, Phys. Usp. 60, 259 (2017).

    Article  ADS  Google Scholar 

  18. F. Zehnhausern, Y. Martin, and K. Wickramasinghe, Science (Washington, DC, U. S.) 269, 1083 (1995).

    Article  ADS  Google Scholar 

  19. R. Hillenbrand and F. Keilmann, DE Patent No. DE200,610,002,461.

  20. J. S. Batchelder and M. A. Taubenblatt, Appl. Phys. Lett. 55, 215 (1989).

    Article  ADS  Google Scholar 

  21. F. Keilmann and R. Hillenbrand, Phil. Trans. R. Soc. London, Ser. A 362, 787 (2004).

    Article  ADS  Google Scholar 

  22. D. Kazantsev, arXiv:1307.2563 (2013).

    Google Scholar 

  23. D. Kazantsev and H. Ryssel, Appl. Phys. A 113, 27 (2013).

    Article  ADS  Google Scholar 

  24. D. V. Kazantsev and H. Ryssel, Mod. Instrum. 2, 33 (2013).

    Article  Google Scholar 

  25. Y. J. Chabal and A. J. Sievers, Appl. Phys. Lett. 32, 90 (1978).

    Article  ADS  Google Scholar 

  26. D. V. Kazantsev, JETP Lett. 83, 323 (2006).

    Article  ADS  Google Scholar 

  27. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82, 2590 (1999).

    Article  ADS  Google Scholar 

  28. C. Girard and A. Dereux, Rep. Rep. Prog. Phys. 59, 657 (1996).

    Article  ADS  Google Scholar 

  29. D. Bimberg, R. Blachnik, P. Dean, et al., Physik der Elemente der IV. Gruppe und der III–V Verbindungen (Springer, Berlin, Heidelberg, 1981).

    Google Scholar 

  30. F. Bechstedt, P. Kaeckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, and J. Furthmueller, Phys. Status Solidi B 202, 35 (1997).

    Article  ADS  Google Scholar 

  31. H. Harima, S. Nakashima, and T. Uemura, J. Appl. Phys. 78, 1996 (1995).

    Article  ADS  Google Scholar 

  32. R. Ruppin and R. Englman, Rep. Prog. Phys. 33, 149 (1970).

    Article  ADS  Google Scholar 

  33. M. G. Blaber, M. D. Arnold, and M. J. Ford, J. Phys.: Condens. Matter 22, 143201 (2010).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kazantsev.

Additional information

Original Russian Text © D.V. Kazantsev, E.A. Kazantseva, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 8, pp. 532–536.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazantsev, D.V., Kazantseva, E.A. Enhancement of the Local Electromagnetic Field over Planar “Particles” Formed on the Surface of a Polar Crystal. Jetp Lett. 107, 512–515 (2018). https://doi.org/10.1134/S0021364018080106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018080106

Navigation