Advertisement

JETP Letters

, Volume 107, Issue 8, pp 470–476 | Cite as

Dynamics of Heavy Carriers in the Ferromagnetic Superconductor UGe2

  • V. G. Storchak
  • J. H. Brewer
  • D. G. Eshchenko
  • P. W. Mengyan
  • O. E. Parfenov
  • A. M. Tokmachev
Condensed Matter
  • 30 Downloads

Abstract

Superconductivity and ferromagnetism in a number of uranium-based materials come from the same f-electrons with a relatively large effective mass, suggesting the presence of a band of heavy quasiparticles, whose nature is still a mystery. Here, UGe2 dynamics in both ferromagnetic and paramagnetic phases is studied employing high-field μ+SR spectroscopy. The spectra exhibit a doublet structure characteristic to formation of subnanometer-sized magnetic polarons. This model is thoroughly explored here and correlated with the unconventional physics of UGe2. The heavy-fermion behavior is ascribed to magnetic polarons; when coherent they form a narrow band, thus reconciling heavy carriers with superconductivity and itinerant ferromagnetism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Pfleiderer, Rev. Mod. Phys. 81, 1551 (2009).CrossRefADSGoogle Scholar
  2. 2.
    Z. Fisk, D. W. Hess, C. J. Pethick, D. Pines, J. L. Smith, J. D. Thompson, and J. O. Willis, Science (Washington, DC, U. S.) 239, 33 (1988).CrossRefADSGoogle Scholar
  3. 3.
    F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).CrossRefADSGoogle Scholar
  4. 4.
    H. R. Ott, H. Rudiger, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 50, 1595 (1983).CrossRefADSGoogle Scholar
  5. 5.
    G. R. Stewart, Z. Fisk, J. O. Willis, and J. L. Smith, Phys. Rev. Lett. 52, 679 (1984).CrossRefADSGoogle Scholar
  6. 6.
    S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature (London, U.K.) 406, 587 (2000).CrossRefADSGoogle Scholar
  7. 7.
    D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature (London, U.K.) 413, 613 (2001).CrossRefADSGoogle Scholar
  8. 8.
    T. Park, M. J. Graf, L. Boulaevskii, J. L. Sarrao, and J. D. Thompson, Proc. Nat. Acad. Sci. USA 105, 6825 (2008).CrossRefADSGoogle Scholar
  9. 9.
    R. Troć, Z. Gajek, and A. Pikul, Phys. Rev. B 86, 224403 (2012).CrossRefADSGoogle Scholar
  10. 10.
    P. Coleman, I. Paul, and J. Rech, Phys. Rev. B 72, 094430 (2005).CrossRefADSGoogle Scholar
  11. 11.
    P. Coleman, in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. Parkin (Wiley, Hoboken, 2007), Vol. 1.Google Scholar
  12. 12.
    N. F. Mott, Metal–Insulator Transitions (Taylor Francis, London, 1990).Google Scholar
  13. 13.
    S. von Molnár and P. A. Stampe, in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. Parkin (Wiley, Hoboken, 2007), Vol. 5.Google Scholar
  14. 14.
    J. H. Brewer, in Encyclopedia of Applied Physics (VCH, New York, 1994), Vol. 11.Google Scholar
  15. 15.
    V. G. Storchak, O. E. Parfenov, J. H. Brewer, P. L. Russo, S. L. Stubbs, R. L. Lichti, D. G. Eshchenko, E. Morenzoni, T. G. Aminov, V. P. Zlomanov, A. A. Vinokurov, R. L. Kallaher, and S. von Molnár, Phys. Rev. B 80, 235203 (2009).CrossRefADSGoogle Scholar
  16. 16.
    V. G. Storchak, J. H. Brewer, D. J. Arseneau, S. L. Stubbs, O. E. Parfenov, D. G. Eshchenko, E. Morenzoni, and T. G. Aminov, Phys. Rev. B 79, 193205 (2009).CrossRefADSGoogle Scholar
  17. 17.
    V. G. Storchak, J. H. Brewer, S. L. Stubbs, O. E. Parfenov, R. L. Lichti, P. W. Mengyan, J. He, I. Bredeson, D. Hitchcock, and D. Mandrus, Phys. Rev. Lett. 105, 076402 (2010).CrossRefADSGoogle Scholar
  18. 18.
    V. G. Storchak, J. H. Brewer, R. L. Lichti, T. A. Lograsso, and D. L. Schlagel, Phys. Rev. B 83, 140404(R) (2011).CrossRefADSGoogle Scholar
  19. 19.
    V. G. Storchak, J. H. Brewer, D. G. Eshchenko, P. W. Mengyan, O. E. Parfenov, A. M. Tokmachev, P. Dosanjh, Z. Fisk, and J. L. Smith, New J. Phys. 18, 083029 (2016).CrossRefADSGoogle Scholar
  20. 20.
    V. G. Storchak, J. H. Brewer, D. J. Arseneau, S. L. Stubbs, O. E. Parfenov, D. G. Eshchenko, and A. A. Bush, Phys. Rev. B 79, 220406(R) (2009).CrossRefADSGoogle Scholar
  21. 21.
    H. Rho, C. S. Snow, S. L. Cooper, Z. Fisk, A. Comment, and J.-P. Ansermet, Phys. Rev. Lett. 88, 127401 (2002).CrossRefADSGoogle Scholar
  22. 22.
    B. Casals, R. Cichelero, P. G. Fernández, J. Junquera, D. Pesquera, M. Campoy-Quiles, I. C. Infante, F. Sánchez, J. Fontcuberta, and G. Herranz, Phys. Rev. Lett. 117, 026401 (2016).CrossRefADSGoogle Scholar
  23. 23.
    G. Rimal and J. Tang, Sci. Rep. 7, 42224 (2017).CrossRefADSGoogle Scholar
  24. 24.
    A. B. Henriques, A. R. Naupa, P. A. Usachev, V. V. Pavlov, P. H. O. Rappl, and E. Abramof, Phys. Rev. B 95, 045205 (2017).CrossRefADSGoogle Scholar
  25. 25.
    V. G. Storchak, J. H. Brewer, D. G. Eshchenko, P. W. Mengyan, O. E. Parfenov, and D. Sokolov, J. Phys.: Conf. Ser. 551, 012016 (2014).Google Scholar
  26. 26.
    B. D. Patterson, Rev. Mod. Phys. 60, 69 (1988).CrossRefADSGoogle Scholar
  27. 27.
    Y. Sakurai, M. Itou, E. Yamamoto, Y. Haga, and Y. Ōnuki, J. Phys. Soc. Jpn. 75, 96 (2006).CrossRefADSGoogle Scholar
  28. 28.
    A. D. Huxley, S. Raymond, and E. Ressouche, Phys. Rev. Lett. 91, 207201 (2003).CrossRefADSGoogle Scholar
  29. 29.
    V. G. Storchak and N. V. Prokof’ev, Rev. Mod. Phys. 70, 929 (1998).CrossRefADSGoogle Scholar
  30. 30.
    A. Yaouanc, P. Dalmas de Réotier, P. C. M. Gubbens, C. T. Kaiser, A. A. Menovsky, M. Mihalik, and S. P. Cottrell, Phys. Rev. Lett. 89, 147001 (2002).CrossRefADSGoogle Scholar
  31. 31.
    N. Kernavanois, B. Grenier, A. Huxley, E. Ressouche, J. P. Sanchez, and J. Flouquet, Phys. Rev. B 64, 174509 (2001).CrossRefADSGoogle Scholar
  32. 32.
    V. Guritanu, N. P. Armitage, R. Tediosi, S. S. Saxena, A. Huxley, and D. van der Marel, Phys. Rev. B 78, 172406 (2008).CrossRefADSGoogle Scholar
  33. 33.
    K. G. Sandeman, G. G. Lonzarich, and A. J. Schofield, Phys. Rev. Lett. 90, 167005 (2003).CrossRefADSGoogle Scholar
  34. 34.
    A. Harada, S. Kawasaki, H. Mukuda, Y. Kitaoka, Y. Haga, E. Yamamoto, Y. Ōnuki, K. M. Itoh, E. E. Haller, and H. Harima, Phys. Rev. B 75, 140502(R) (2007).CrossRefADSGoogle Scholar
  35. 35.
    A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braithwaite, R. Calemczuk, and J. Flouquet, Phys. Rev. B 63, 144519 (2001).CrossRefADSGoogle Scholar
  36. 36.
    N. Tateiwa, T. C. Kobayashi, K. Hanazono, K. Amaya, Y. Haga, R. Settai, and Y. Ōnuki, J. Phys.: Condens. Matter 13, L17 (2001).ADSGoogle Scholar
  37. 37.
    C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. 89, 147005 (2002).CrossRefADSGoogle Scholar
  38. 38.
    N. Terashima, T. Matsumoto, C. Terakura, S. Uji, N. Kimura, M. Endo, T. Komatsubara, and H. Aoki, Phys. Rev. Lett. 87, 166401 (2001).CrossRefADSGoogle Scholar
  39. 39.
    V. H. Tran, S. Paschen, R. Troć, M. Baenitz, and F. Steglich, Phys. Rev. B 69, 195314 (2004).CrossRefADSGoogle Scholar
  40. 40.
    A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 2003).Google Scholar
  41. 41.
    P. Noziéres, J. Low Temp. Phys. 17, 31 (1974).CrossRefADSGoogle Scholar
  42. 42.
    N. Kabeya, R. Iijima, E. Osaki, S. Ban, K. Imura, K. Deguchi, N. Aso, Y. Homma, Y. Shiokawa, and N. K. Sato, Phys. B (Amsterdam, Neth.) 404, 3238 (2009).CrossRefADSGoogle Scholar
  43. 43.
    P. Majumdar and P. B. Littlewood, Nature (London, U.K.) 395, 479 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. G. Storchak
    • 1
  • J. H. Brewer
    • 2
  • D. G. Eshchenko
    • 3
  • P. W. Mengyan
    • 4
    • 5
  • O. E. Parfenov
    • 1
  • A. M. Tokmachev
    • 1
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  3. 3.Bruker BioSpin AGFällandenSwitzerland
  4. 4.Department of PhysicsNorthern Michigan UniversityMarquetteUSA
  5. 5.Department of PhysicsTexas Tech UniversityLubbockUSA

Personalised recommendations