Advertisement

JETP Letters

, Volume 107, Issue 8, pp 493–499 | Cite as

Influence of Coulomb Correlations on Nonequilibrium Quantum Transport in a Quadruple Quantum-Dot Structure

  • M. Yu. Kagan
  • S. V. Aksenov
Condensed Matter
  • 14 Downloads

Abstract

The description of quantum transport in a quadruple quantum-dot structure (QQD) is proposed taking into account the Coulomb correlations and nonzero bias voltages. To achieve this goal the combination of nonequilibrium Green’s functions and equation-of-motion technique is used. It is shown that the anisotropy of kinetic processes in the QQD leads to negative differential conductance (NDC). The reason for the effect is an interplay of the Fano resonances, which are induced by the interdot Coulomb correlations. Different ways to increase the peak-to-valley ratio related to the observed NDC are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. de Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev. Lett. 97, 036807 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature (London, U.K.) 442, 766 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    M. R. Delbecq, T. Nakajima, T. Otsuka, S. Amaha, J. D. Watson, M. J. Manfra, and S. Tarucha, Appl. Phys. Lett. 104, 183111 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    T. Ito, T. Otsuka, S. Amaha, M. R. Delbecq, T. Nakajima, J. Yoneda, K. Takeda, G. Allison, A. Noiri, K. Kawasaki, and S. Tarucha, Sci. Rep. 6, 39113 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    T. Byrnes, N. Y. Kim, K. Kusudo, and Y. Yamamoto, Phys. Rev. B 78, 075320 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    C.-Y. Hsieh, Y.-P. Shim, M. Korkusinski, and P. Hawrylak, Rep. Prog. Phys. 75, 114501 (2012).CrossRefGoogle Scholar
  9. 9.
    R. Thalineau, S. Hermelin, A. D. Wieck, C. Bauerle, L. Saminadayar, and T. Meunier, Appl. Phys. Lett. 101, 103102 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    T. A. Baart, N. Jovanovic, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Appl. Phys. Lett. 109, 043101 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. Oguri, Y. Nisikawa, Y. Tanaka, and T. Numata, J. Magn. Magn. Mater. 310, 1139 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    P. Barthelemy and L. M. K. Vandersypen, Ann. Phys. 525, 808 (2013).MathSciNetCrossRefGoogle Scholar
  13. 13.
    I. Ozfidan, A. H. Trojnara, M. Korkusinski, and P. Hawrylak, Solid State Commun. 172, 15 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 72, 165308 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    C.-Y. Hsieh, Y.-P. Shim, and P. Hawrylak, Phys. Rev. B 85, 085309 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    D. Weinmann, W. Hausler, and B. Kramer, Phys. Rev. Lett. 74, 984 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    D. Urban and J. Konig, Phys. Rev. B 79, 165319 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    B. Michaelis, C. Emary, and C. W. J. Beenakker, Europhys. Lett. 73, 677 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    C. Poltl, C. Emary, and T. Brandes, Phys. Rev. B 80, 115313 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    N. S. Maslova, V. N. Mantsevich, and P. I. Arseev, J. Exp. Theor. Phys. 122, 1084 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    D. Jacob, B. Wunsch, and D. Pfannkuche, Phys. Rev. B 70, 081314(R) (2004).ADSCrossRefGoogle Scholar
  22. 22.
    D. Rogovin and D. J. Scalapino, Ann. Phys. (N.Y.) 86, 1 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).Google Scholar
  24. 24.
    J. Q. You and H.-Z. Zheng, Phys. Rev. B 60, 8727 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    M. Yu. Kagan, V. V. Val’kov, and S. V. Aksenov, Phys. Rev. B 95, 035411 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    M. Yu. Kagan, V. V. Val’kov, and S. V. Aksenov, J. Magn. Magn. Mater. 440, 15 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    C. Lacroix, J. Phys. F: Met. Phys. 11, 2389 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    A. Volya and V. Zelevinsky, Phys. Rev. C 67, 054322 (2003).ADSCrossRefGoogle Scholar
  29. 29.
    A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Phys. Rev. B 73, 235342 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    A. F. Sadreev and T. V. Babushkina, JETP Lett. 88, 360 (2008).CrossRefGoogle Scholar
  31. 31.
    P. I. Arseev, N. S. Maslova, and V. N. Mantsevich, J. Exp. Theor. Phys. 142, 156 (2012).Google Scholar
  32. 32.
    J. Hubbard, Proc. R. Soc. London, Ser. A 281, 401 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kapitza Institute for Physical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Kirensky Institute of Physics, Federal Research Center KSC, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations