Skip to main content
Log in

Dimerization in Honeycomb Na2RuO3 under Pressure: a DFT Study

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ∼3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Xu, A. Assoud, N. Soheilnia, S. Derakhshan, H. L. Cuthbert, J. E. Greedan, M. H. Whangbo, and H. Kleinke, Inorg. Chem. 44, 5042 (2005).

    Article  Google Scholar 

  2. Y. Miura, R. Hirai, Y. Kobayashi, and M. Sato, J. Phys. Soc. Jpn. 75, 084707 (2006).

    Article  ADS  Google Scholar 

  3. K. Morimoto, Y. Itoh, K. Yoshimura, M. Kato, and K. Hirota, J. Phys. Soc. Jpn. 75, 083709 (2006).

    Article  ADS  Google Scholar 

  4. M. A. McGuire, J. Yan, P. Lampen-Kelley, A. F. May, V. R. Cooper, L. Lindsay, A. Puretzky, L. Liang, S. KC, E. Cakmak, S. Calder, and B. C. Sales, Phys. Rev. Mater. 1, 64001 (2017).

    Article  Google Scholar 

  5. E. Lefrancois, M. Songvilay, J. Robert, G. Nataf, E. Jordan, L. Chaix, C. V. Colin, P. Lejay, A. Hadj-Azzem, R. Ballou, and V. Simonet, Phys. Rev. B 94, 214416 (2016).

    Article  ADS  Google Scholar 

  6. A. K. Bera, S. M. Yusuf, A. Kumar, and C. Ritter, Phys. Rev. B 95, 094424 (2017).

    Article  ADS  Google Scholar 

  7. S. Lee, S. Choi, J. Kim, H. Sim, C. Won, S. Lee, S. A. Kim, N. Hur, and J. G. Park, J. Phys.: Condens. Matter 24, 456004 (2012).

    ADS  Google Scholar 

  8. D. M. Korotin, V. V. Mazurenko, V. I. Anisimov, and S. V. Streltsov, Phys. Rev. B 91, 224405 (2015).

    Article  ADS  Google Scholar 

  9. S. Streltsov, I. I. Mazin, and K. Foyevtsova, Phys. Rev. B 92, 134408 (2015).

    Article  ADS  Google Scholar 

  10. I. Zivkovic, K. Prsa, O. Zaharko, and H. Berger, J. Phys.: Condens. Matter 22, 56002 (2010).

    Google Scholar 

  11. A. Kitaev, Ann. Phys. (N.Y). 321, 2 (2006).

    Article  ADS  Google Scholar 

  12. G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 17205 (2009).

    Article  ADS  Google Scholar 

  13. A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, D. L. Kovrizhin, S. Bhattacharjee, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler, Nat. Mater. 15, 733 (2016).

    Article  ADS  Google Scholar 

  14. J. Zheng, K. Ran, T. Li, J. Wang, P. Wang, B. Liu, Z.-X. Liu, B. Normand, J. Wen, and W. Yu, Phys. Rev. Lett. 119, 227208 (2017).

    Article  ADS  Google Scholar 

  15. A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner, and S. E. Nagler, Science (Washington, DC, U. S.) 356, 1055 (2017).

    Article  ADS  Google Scholar 

  16. Y. Miura, Y. Yasui, M. Sato, N. Igawa, and K. Kakurai, J. Phys. Soc. Jpn. 76, 033705 (2007).

    Article  ADS  Google Scholar 

  17. Y. Miura, M. Sato, Y. Yamakawa, T. Habaguchi, and Y. Ono, J. Phys. Soc. Jpn. 78, 094706 (2009).

    Article  ADS  Google Scholar 

  18. S. A. J. Kimber, I. I. Mazin, J. Shen, H. O. Jeschke, S.V. Streltsov, D. N. Argyriou, R. Valenti, and D. I. Khomskii, Phys. Rev. B 89, 081408 (2014).

    Article  ADS  Google Scholar 

  19. J. Park, T.-Y. Tan, D. T. Adroja, A. Daoud-Aladine, S. Choi, D.-Y. Cho, S.-H. Lee, J. Kim, H. Sim, T.Morioka, H. Nojiri, V. V. Krishnamurthy, P. Manuel, M. R. Lees, S. V. Streltsov, D. I. Khomskii, and J.-G. Park, Sci. Rep. 6, 25238 (2016).

    Article  ADS  Google Scholar 

  20. J. C. Wang, J. Terzic, T. F. Qi, F. Ye, S. J. Yuan, S. Aswartham, S. V. Streltsov, D. I. Khomskii, R. K. Kaul, and G. Cao, Phys. Rev. B 90, 161110(R) (2014).

    Article  ADS  Google Scholar 

  21. V. V. Gapontsev, E. Z. Kurmaev, C. I. Sathish, S. Yun, J.-G. Park, and S. V. Streltsov, J. Phys.: Condens. Matter 29, 405804 (2017).

    Google Scholar 

  22. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  26. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  27. M. P. Jimenez-Segura, A. Ikeda, S. Yonezawa, and Y. Maeno, Phys. Rev. B 93, 75133 (2016).

    Article  ADS  Google Scholar 

  28. R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  29. S. V. Streltsov and D. I. Khomskii, Proc. Natl. Acad. Sci. 113, 10491 (2016).

    Article  Google Scholar 

  30. S. V. Streltsov and D. I. Khomskii, Phys. Usp. 60, 1121 (2017).

    Article  ADS  Google Scholar 

  31. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  ADS  Google Scholar 

  32. G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002).

    Article  ADS  Google Scholar 

  33. V. Hermann, M. Altmeyer, J. Ebad-Allah, F. Freund, A. Jesche, A. A. Tsirlin, M. Hanfland, P. Gegenwart, I. I. Mazin, D. I. Khomskii, R. Valenti, and C. A. Kuntscher, Phys. Rev. B 97, 20104 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Gazizova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazizova, D.D., Ushakov, A.V. & Streltsov, S.V. Dimerization in Honeycomb Na2RuO3 under Pressure: a DFT Study. Jetp Lett. 107, 483–487 (2018). https://doi.org/10.1134/S0021364018080015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018080015

Navigation