Skip to main content
Log in

Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence

  • Plasma, Hydroand Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The evolution of a vortex flow excited by an electromagnetic technique in a thin layer of a conducting liquid was studied experimentally. Small-scale vortices, excited at the pumping scale, merge with time due to the nonlinear interaction and produce large-scale structures—the inverse energy cascade is formed. The dependence of the energy spectrum in the developed inverse cascade is well described by the Kraichnan law k–5/3. At large scales, the inverse cascade is limited by cell sizes, and a large-scale coherent vortex flow is formed, which occupies almost the entire area of the experimental cell. The radial profile of the azimuthal velocity of the coherent vortex immediately after the pumping was switched off has been established for the first time. Inside the vortex core, the azimuthal velocity grows linearly along a radius and reaches a constant value outside the core, which agrees well with the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Boffetta and R. E. Ecke, Ann. Rev. Fluid Mech. 71, 427 (2012).

    Article  ADS  Google Scholar 

  2. L. M. Smith and V. Yakhot, Phys. Rev. Lett. 71, 352 (1993).

    Article  ADS  Google Scholar 

  3. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).

    Article  ADS  Google Scholar 

  4. C. E. Leith, Phys. Fluids 11, 671 (1968).

    Article  ADS  Google Scholar 

  5. G. K. Batchelor, Phys. Fluids 12, 233 (1969).

    Article  Google Scholar 

  6. J. Sommeria, J. Fluid Mech. 170, 139 (1986).

    Article  ADS  Google Scholar 

  7. H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).

    Article  ADS  Google Scholar 

  8. N. Francois, H. Xia, H. Punzmann, and M. Shats, Phys. Rev. Lett. 110, 194501 (2013).

    Article  ADS  Google Scholar 

  9. N. Francois, H. Xia, H. Punzmann, S. Ramsden, and M. Shats, Phys. Rev. X 4, 021021 (2014).

    Google Scholar 

  10. I. V. Kolokolov and V. V. Lebedev, JETP Lett. 106, 659 (2017).

    Article  ADS  Google Scholar 

  11. A. Frishman, J. Laurie, and G. Falkovich, Phys. Rev. Fluids 2, 032602 (2017).

    Article  ADS  Google Scholar 

  12. J. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113, 254503 (2014).

    Article  ADS  Google Scholar 

  13. I. V. Kolokolov and V. V. Lebedev, Phys. Rev. E 93, 033104 (2016).

    Article  ADS  Google Scholar 

  14. I. V. Kolokolov and V. V. Lebedev, J. Fluid Mech. 809, R2–1 (2016).

    Article  ADS  Google Scholar 

  15. W. Thieckle and E. J. Stamhuis, J. Open Res. Software 2, 30 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Orlov.

Additional information

Original Russian Text © A.V. Orlov, M.Yu. Brazhnikov, A.A. Levchenko, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 3, pp. 166–171.

The article was translated by A.V. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A.V., Brazhnikov, M.Y. & Levchenko, A.A. Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence. Jetp Lett. 107, 157–162 (2018). https://doi.org/10.1134/S0021364018030128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018030128

Navigation