Skip to main content
Log in

On the Use of the Running Coupling Constant αs in Calculations of Radiative Energy Losses of Fast Partons in a Quark–Gluon Plasma

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The introduction of the running coupling constant αs for a gluon emission vertex in calculations of radiative energy losses of partons in a quark–gluon plasma is discussed. It is argued that the virtuality scale for the running coupling constant αs for induced emission of gluons is determined by the square of the transverse momentum of an emitted gluon rather than by the square of the invariant mass of the final two-parton state often used in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. L. Dokshitzer, V. A. Khoze, A. H. Mueller, and S. I. Troian, Basics of Perturbative QCD (Frontieres, Gif-sur-Yvette, France, 1991).

    Google Scholar 

  2. T. Sjostrand, L. Lonnblad, S. Mrenna, and P. Skands, arXiv:hep-ph/0308153.

  3. B. I. Ermolaev and V. S. Fadin, JETP Lett. 33, 269 (1981).

    ADS  Google Scholar 

  4. Y. L. Dokshitzer, V. A. Khoze, A. H. Mueller, and S. I. Troian, Rev. Mod. Phys. 60, 373 (1988).

    Article  ADS  Google Scholar 

  5. Y. L. Dokshitzer, D. Diakonov, and S. I. Troian, Phys. Rep. 58, 269 (1980).

    Article  ADS  Google Scholar 

  6. F. E. Low, Phys. Rev. 110, 974 (1958).

    Article  ADS  Google Scholar 

  7. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigné, and D. Schiff, Nucl. Phys. B 483, 291 (1997); hepph/9607355.

    Article  ADS  Google Scholar 

  8. B. G. Zakharov, JETP Lett. 63, 952 (1996); hepph/9607440.

    Article  ADS  Google Scholar 

  9. B. G. Zakharov, JETP Lett. 65, 615 (1997); hepph/9704255.

    Article  ADS  Google Scholar 

  10. M. Gyulassy, P. Lévai, and I. Vitev, Nucl. Phys. B 594, 371 (2001); hep-ph/0006010.

    Article  ADS  Google Scholar 

  11. U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001); hepph/0008241.

    Article  ADS  Google Scholar 

  12. P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys. 0206, 030 (2002); hep-ph/0204343.

    Article  ADS  Google Scholar 

  13. R. Baier, Y. L. Dokshitzer, A. H. Mueller, and D. Schiff, J. High Energy Phys. 0109, 033 (2001); hepph/0106347.

    Article  ADS  Google Scholar 

  14. B. G. Zakharov, Phys. At. Nucl. 61, 838 (1998); hepph/9807540.

    Google Scholar 

  15. B. G. Zakharov, JETP Lett. 70, 176 (1999); hepph/9906536.

    Article  ADS  Google Scholar 

  16. P. Lévai and U. Heinz, Phys. Rev. C 57, 1879 (1998); hep-ph/9710463.

    Article  ADS  Google Scholar 

  17. B. G. Zakharov, JETP Lett. 73, 49 (2001); hepph/0012360.

    Article  ADS  Google Scholar 

  18. B. G. Zakharov, J. Phys. G 41, 075008 (2014); arXiv:1311.1159.

    Article  ADS  Google Scholar 

  19. C. Park, C. Shen, S. Jeon, and C. Gale, Nucl. Part. Phys. Proc. 289–290, 289 (2017); arXiv:1612. 06754.

    Article  Google Scholar 

  20. B. G. Zakharov, JETP Lett. 88, 781 (2008); arXiv:0811.0445.

    Article  ADS  Google Scholar 

  21. B. G. Zakharov, JETP Lett. 93, 683 (2011); arXiv:1105.2028.

    Article  ADS  Google Scholar 

  22. B. G. Zakharov, JETP Lett. 96, 616 (2013); arXiv:1210.4148.

    Article  ADS  Google Scholar 

  23. B. G. Zakharov, J. Phys. G 40, 085003 (2013); arXiv:1304.5742.

    Article  ADS  Google Scholar 

  24. C. Young, B. Schenke, S. Jeon, and C. Gale, Nucl. Phys. A 910–911, 494 (2013); arXiv:1209.5679.

    Article  Google Scholar 

  25. A. Buzzatti and M. Gyulassy, Nucl. Phys. A 904–905, 779c (2013); arXiv:1210.6417.

    Article  Google Scholar 

  26. J. Xu, J. Liao, and M. Gyulassy, Chin. Phys. Lett. 32, 092501 (2015); arXiv:1411.3673.

    Article  ADS  Google Scholar 

  27. J. Xu, J. Liao, and M. Gyulassy, J. High Energy Phys. 1602, 169 (2016); arXiv:1508.00552.

    Article  ADS  Google Scholar 

  28. S. Shi, J. Xu, J. Liao, and M. Gyulassy, Nucl. Phys. A 967, 648 (2017); arXiv:1704.04577.

    Article  ADS  Google Scholar 

  29. Mag. Djordjevic and Mar. Djordjevic, Phys. Lett. B 734, 286 (2014); arXiv:1307.4098.

    Article  ADS  Google Scholar 

  30. M. Djordjevic, Phys. Rev. Lett. 112, 042302 (2014); arXiv:1307.4702.

    Article  ADS  Google Scholar 

  31. Mag. Djordjevic and Marko Djordjevic, J. Phys. G 41, 055104 (2014); arXiv:1307.4714.

    Article  ADS  Google Scholar 

  32. Magdalena Djordjevic, Mar. Djordjevic, and B. Blagojevic, Phys. Lett. B 737, 298 (2014); arXiv:1405.4250.

    Article  ADS  Google Scholar 

  33. B. Blagojevic and M. Djordjevic, J. Phys. G 42, 075105 (2015); arXiv:1411.1649.

    Article  ADS  Google Scholar 

  34. Mag. Djordjevic and Mar. Djordjevic, Phys. Rev. C 92, 024918 (2015); arXiv:1505.04316.

    Article  ADS  Google Scholar 

  35. M. Djordjevic, B. Blagojevic, and L. Zivkovic, Phys. Rev. C 94, 044908 (2016); arXiv:1601. 07852.

    Article  ADS  Google Scholar 

  36. B. G. Zakharov, JETP Lett. 80, 67 (2004); hepph/0406063.

    Article  ADS  Google Scholar 

  37. B. G. Zakharov, in Proceedings of the 33rd Recontres de Moriond, Les Arcs, France, March 21–28, 1998; hepph/9807396.

    Google Scholar 

  38. N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 64, 631 (1994); hep-ph/9306230.

    ADS  Google Scholar 

  39. N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 327, 149 (1994); hep-ph/9402209.

    Article  ADS  Google Scholar 

  40. N. N. Nikolaev, B. G. Zakharov, and V. R. Zoller, JETP Lett. 59, 6 (1994); hep-ph/9312268.

    ADS  Google Scholar 

  41. E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, Sov. Phys. JETP 45, 199 (1977).

    ADS  Google Scholar 

  42. I. I. Balitsky and L. N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978).

    Google Scholar 

  43. V. S. Fadin and L. N. Lipatov, Phys. Lett. B 429, 127 (1998); hep-ph/9802290.

    Article  ADS  Google Scholar 

  44. I. Balitsky, Phys. Rev. D 75, 014001 (2007); hepph/0609105.

    Article  ADS  Google Scholar 

  45. L. N. Lipatov, Sov. Phys. JETP 63, 904 (1986).

    Google Scholar 

  46. B. G. Zakharov, JETP Lett. 80, 617 (2004); hepph/0410321.

    Article  ADS  Google Scholar 

  47. Yu. L. Dokshitzer, V. A. Khoze, and S. I. Troyan, Phys. Rev. D 53, 89 (1996); hep-ph/9506425.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Zakharov.

Additional information

Original Russian Text © B.G. Zakharov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 2, pp. 81–86.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, B.G. On the Use of the Running Coupling Constant αs in Calculations of Radiative Energy Losses of Fast Partons in a Quark–Gluon Plasma. Jetp Lett. 107, 73–78 (2018). https://doi.org/10.1134/S0021364018020145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018020145

Navigation